def initGraph(self): shape = self.inputProvider.outputs["Output"].shape srcs = [] minMax = [] normalize = [] print "* Data has shape=%r" % (shape,) #create a layer for each channel of the input: slicer=OpMultiArraySlicer2(self.g) slicer.inputs["Input"].connect(self.inputProvider.outputs["Output"]) slicer.inputs["AxisFlag"].setValue('c') nchannels = shape[-1] for ich in xrange(nchannels): data=slicer.outputs['Slices'][ich][:].allocate().wait() #find the minimum and maximum value for normalization mm = (numpy.min(data), numpy.max(data)) print " - channel %d: min=%r, max=%r" % (ich, mm[0], mm[1]) minMax.append(mm) if self._normalize_data: normalize.append(mm) else: normalize.append((0,255)) layersrc = LazyflowSource(slicer.outputs['Slices'][ich], priority = 100) layersrc.setObjectName("raw data channel=%d" % ich) srcs.append(layersrc) #FIXME: we shouldn't merge channels automatically, but for now it's prettier layer1 = None if nchannels == 1: layer1 = GrayscaleLayer(srcs[0], range=minMax[0], normalize=normalize[0]) print " - showing raw data as grayscale" elif nchannels==2: layer1 = RGBALayer(red = srcs[0], normalizeR=normalize[0], green = srcs[1], normalizeG=normalize[1], range=minMax[0:2]+[(0,255), (0,255)]) print " - showing channel 1 as red, channel 2 as green" elif nchannels==3: layer1 = RGBALayer(red = srcs[0], normalizeR=normalize[0], green = srcs[1], normalizeG=normalize[1], blue = srcs[2], normalizeB=normalize[2], range = minMax[0:3]) print " - showing channel 1 as red, channel 2 as green, channel 3 as blue" else: print "only 1,2 or 3 channels supported so far" return print layer1.name = "Input data" layer1.ref_object = None self.layerstack.append(layer1) opImageList = Op5ToMulti(self.g) opImageList.inputs["Input0"].connect(self.inputProvider.outputs["Output"]) #init the features operator opPF = OpPixelFeaturesPresmoothed(self.g) opPF.inputs["Input"].connect(opImageList.outputs["Outputs"]) opPF.inputs["Scales"].setValue(self.featScalesList) self.opPF=opPF #Caches the features opFeatureCache = OpBlockedArrayCache(self.g) opFeatureCache.inputs["innerBlockShape"].setValue((1,32,32,32,16)) opFeatureCache.inputs["outerBlockShape"].setValue((1,128,128,128,64)) opFeatureCache.inputs["Input"].connect(opPF.outputs["Output"]) opFeatureCache.inputs["fixAtCurrent"].setValue(False) self.opFeatureCache=opFeatureCache self.initLabels() self.dataReadyToView.emit()
def initGraph(self): shape = self.inputProvider.outputs["Output"].shape srcs = [] minMax = [] print "* Data has shape=%r" % (shape,) #create a layer for each channel of the input: slicer=OpMultiArraySlicer2(self.g) slicer.inputs["Input"].connect(self.inputProvider.outputs["Output"]) slicer.inputs["AxisFlag"].setValue('c') nchannels = shape[-1] for ich in xrange(nchannels): if self._normalize_data: data=slicer.outputs['Slices'][ich][:].allocate().wait() #find the minimum and maximum value for normalization mm = (numpy.min(data), numpy.max(data)) print " - channel %d: min=%r, max=%r" % (ich, mm[0], mm[1]) minMax.append(mm) else: minMax.append(None) layersrc = LazyflowSource(slicer.outputs['Slices'][ich], priority = 100) layersrc.setObjectName("raw data channel=%d" % ich) srcs.append(layersrc) #FIXME: we shouldn't merge channels automatically, but for now it's prettier layer1 = None if nchannels == 1: layer1 = GrayscaleLayer(srcs[0], normalize=minMax[0]) layer1.set_range(0,minMax[0]) print " - showing raw data as grayscale" elif nchannels==2: layer1 = RGBALayer(red = srcs[0], normalizeR=minMax[0], green = srcs[1], normalizeG=minMax[1]) layer1.set_range(0, minMax[0]) layer1.set_range(1, minMax[1]) print " - showing channel 1 as red, channel 2 as green" elif nchannels==3: layer1 = RGBALayer(red = srcs[0], normalizeR=minMax[0], green = srcs[1], normalizeG=minMax[1], blue = srcs[2], normalizeB=minMax[2]) layer1.set_range(0, minMax[0]) layer1.set_range(1, minMax[1]) layer1.set_range(2, minMax[2]) print " - showing channel 1 as red, channel 2 as green, channel 3 as blue" else: print "only 1,2 or 3 channels supported so far" return print layer1.name = "Input data" layer1.ref_object = None self.layerstack.append(layer1) self.workflow = PixelClassificationLazyflow( self.g, self.featScalesList, self.inputProvider.outputs["Output"]) self.initLabels() self.startClassification() self.dataReadyToView.emit()