def test_nn(self): vw = VW(convert_to_vw=False, nn=3) pos = "1.0 | a b c" neg = "-1.0 | d e f" vw.fit([pos] * 10 + [neg] * 10) assert vw.predict(["| a b c"]) > 0 assert vw.predict(["| d e f"]) < 0
def test_predict(self, data): raw_model = VW() raw_model.fit(data.x, data.y) model = VWRegressor() model.fit(data.x, data.y) assert np.allclose(raw_model.predict(data.x), model.predict(data.x)) # ensure model can make multiple calls to predict assert np.allclose(raw_model.predict(data.x), model.predict(data.x))
def test_passes(self, data): n_passes = 2 model = VW(loss_function="logistic", passes=n_passes) assert getattr(model, "passes") == n_passes model.fit(data.x, data.y) weights = model.get_coefs() model = VW(loss_function="logistic") # first pass weights should not be the same model.fit(data.x, data.y) assert not np.allclose(weights.data, model.get_coefs().data)
def test_oaa(self): X = [ "1 | feature1:2.5", "2 | feature1:0.11 feature2:-0.0741", "3 | feature3:2.33 feature4:0.8 feature5:-3.1", "1 | feature2:-0.028 feature1:4.43", "2 | feature5:1.532 feature6:-3.2", ] model = VW(convert_to_vw=False, oaa=3, loss_function="logistic") model.fit(X) prediction = model.predict(X) assert np.allclose(prediction, [1.0, 2.0, 3.0, 1.0, 2.0])
def test_save_load(self, data): file_name = "tmp_sklearn.model" model_before = VW(l=100) model_before.fit(data.x, data.y) before_saving = model_before.predict(data.x) model_before.save(file_name) model_after = VW(l=100) model_after.load(file_name) after_loading = model_after.predict(data.x) assert np.allclose(before_saving, after_loading)
def test_lrq(self): X = [ "1 |user A |movie 1", "2 |user B |movie 2", "3 |user C |movie 3", "4 |user D |movie 4", "5 |user E |movie 1", ] model = VW(convert_to_vw=False, lrq="um4", lrqdropout=True, loss_function="quantile") assert getattr(model, "lrq") == "um4" assert getattr(model, "lrqdropout") model.fit(X) prediction = model.predict([" |user C |movie 1"]) assert np.allclose(prediction, [3.0], atol=1)
def test_oaa_probs(self): X = [ "1 | feature1:2.5", "2 | feature1:0.11 feature2:-0.0741", "3 | feature3:2.33 feature4:0.8 feature5:-3.1", "1 | feature2:-0.028 feature1:4.43", "2 | feature5:1.532 feature6:-3.2", ] model = VW(convert_to_vw=False, oaa=3, loss_function="logistic", probabilities=True) model.fit(X) prediction = model.predict(X) assert prediction.shape[0] == 5 assert prediction.shape[1] == 3 assert prediction[0, 0] > 0.1
def test_bfgs(self): data_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "resources", "train.dat") model = VW( convert_to_vw=False, oaa=3, passes=30, bfgs=True, data=data_file, cache=True, quiet=False, ) model.fit() X = [ "1 | feature1:2.5", "2 | feature1:0.11 feature2:-0.0741", "3 | feature3:2.33 feature4:0.8 feature5:-3.1", "1 | feature2:-0.028 feature1:4.43", "2 | feature5:1.532 feature6:-3.2", ] actual = model.predict(X) assert np.allclose(actual, [1.0, 2.0, 3.0, 1.0, 2.0])
def test_fit(self, data): model = VW(loss_function="logistic") assert model.vw_ is None model.fit(data.x, data.y) assert model.vw_ is not None
def test_del(self, data): model = VW() model.fit(data.x, data.y) del model
def test_get_intercept(self, data): model = VW() model.fit(data.x, data.y) intercept = model.get_intercept() assert isinstance(intercept, float)
def test_get_coefs(self, data): model = VW() model.fit(data.x, data.y) weights = model.get_coefs() assert np.allclose(weights.indices, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 116060])
def test_predict_no_convert(self): model = VW(loss_function="logistic", convert_to_vw=False) model.fit(["-1 | bad", "1 | good"]) actual = model.predict(["| good"])[0] assert np.isclose(actual, 0.245515, atol=1e-2)
def test_predict(self, data): model = VW(loss_function="logistic") model.fit(data.x, data.y) actual = model.predict(data.x[:1][:1])[0] assert np.isclose(actual, 0.406929, atol=1e-2)