# --------------------------- Modules Importation --------------------------- # import matplotlib matplotlib.use('pgf') import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import scipy.special as sp import scipy.interpolate as interpolate import scipy.integrate as integrate import scipy.constants as cst import itertools import unittest import sympy import vphys pgf_with_pdflatex = vphys.default_pgf_configuration() matplotlib.rcParams.update(pgf_with_pdflatex) # -------------------------------- Functions -------------------------------- # def user_mod(value, modulo): return value-np.abs(modulo)*np.floor(value/np.abs(modulo)) def ExpansionCoefficient(m,p): """ Computes the expansion coefficient of non-paraxial terms of the Lax series. Its mathematical form is (Opt. Lett 28(10), 2003): c_p^(m) = (2m)!/[m(p-1)!(m-1)!(m+p)!]. We compute it by first taking the logarithms, expanding the terms, and then computing the exponential of that. """ firstNumerator = sp.gammaln(2*m+1)
# -- OS and other stuff. import time import argparse import imp # -- Load our custom modules. vphys = imp.load_source('vphys', "../../python-tools/vphys.py") AnalysisStratto = imp.load_source('AnalysisStratto', "../../python-tools/AnalysisStrattoCalculator.py") import vphys import AnalysisStratto as analstrat # ------------------------------ Configuration ------------------------------ # #-- We reset the LaTeX parameters to enable XeLaTeX. mpl.rcParams.update(vphys.default_pgf_configuration()) # ----------------------------- Argument Parsing ---------------------------- # parser = argparse.ArgumentParser() parser.add_argument("--output-directory", type=str, default="figs/", help="Directory where the figures will be saved.") args = parser.parse_args() # --------------------------- Function Definition --------------------------- # def GaussIntegrals(analysis_obj, field_type, r_index, frequency_index): """ Evaluates the Gaussian integral of Maxwell's equations, either for the magnetic or electric field, for a given frequency, and for a given value of r.