コード例 #1
0
# Curve plot along x = 0 comparing p and w
import numpy as np

tol = 0.001  # avoid hitting points outside the domain
y = np.linspace(-1 + tol, 1 - tol, 101)
points = [(0, y_) for y_ in y]  # 2D points
w_line = np.array([w(point) for point in points])
p_line = np.array([p(point) for point in points])

#######################################################################
from vtkplotter.dolfin import plot
from vtkplotter import Line, Latex

pde = r'-T \nabla^{2} D=p, ~\Omega=\left\{(x, y) | x^{2}+y^{2} \leq R\right\}'
tex = Latex(pde, pos=(0, 1.1, .1), s=0.2, c='w')

wline = Line(y, w_line * 10, c='white', lw=4)
pline = Line(y, p_line / 4, c='lightgreen', lw=4)

plot(w, wline, tex, at=0, N=2, bg='bb', text='Deflection')
plot(p, pline, at=1, text='Load')

#######################################################################
#import matplotlib.pyplot as plt
#plot(w)
#plt.plot(y, 50*w_line, 'k', linewidth=2)  # magnify w
#plt.plot(y, p_line, 'b--', linewidth=2)
#plt.grid(True)
#plt.xlabel('$y$')
#plt.legend(['Deflection ($\\times 50$)', 'Load'], loc='upper left')
コード例 #2
0
ファイル: histo2D.py プロジェクト: ifve/vtkplotter
"""
2D histogram with hexagonal binning.
"""
print(__doc__)
from vtkplotter import Plotter, histogram2D, Points, Latex
import numpy as np

vp = Plotter(axes=1, verbose=0, bg="w")
vp.xtitle = "x gaussian, s=1.0"
vp.ytitle = "y gaussian, s=1.5"
vp.ztitle = "dN/dx/dy"

N = 20000
x = np.random.randn(N) * 1.0
y = np.random.randn(N) * 1.5

histo = histogram2D(x, y, c="dr", bins=15, fill=False)

pts = Points([x, y, np.zeros(N)], c="black", alpha=0.1)

f = r'f(x, y)=A \exp \left(-\left(\frac{\left(x-x_{o}\right)^{2}}{2 \sigma_{x}^{2}}+\frac{\left(y-y_{o}\right)^{2}}{2 \sigma_{y}^{2}}\right)\right)'

formula = Latex(f, c='k', s=2).rotateZ(90).pos(5, -2, 1)

vp.show(histo, pts, formula, viewup="z")
コード例 #3
0
Z = np.zeros((n + 2, n + 2), [('U', np.double), ('V', np.double)])
U, V = Z['U'], Z['V']
u, v = U[1:-1, 1:-1], V[1:-1, 1:-1]

r = 20
u[...] = 1.0
U[n // 2 - r:n // 2 + r, n // 2 - r:n // 2 + r] = 0.50
V[n // 2 - r:n // 2 + r, n // 2 - r:n // 2 + r] = 0.25
u += 0.05 * np.random.uniform(-1, 1, (n, n))
v += 0.05 * np.random.uniform(-1, 1, (n, n))

sy, sx = V.shape
grd = Grid(sx=sx, sy=sy, resx=sx, resy=sy)
grd.lineWidth(0).wireframe(False).lighting(ambient=0.5)
formula = r'(u,v)=(D_u\cdot\Delta u -u v v+F(1-u), D_v\cdot\Delta v +u v v -(F+k)v)'
ltx = Latex(formula, s=15, pos=(0, -sy / 1.9, 0))
print('Du, Dv, F, k, name =', Du, Dv, F, k, name)

for step in range(Nsteps):
    for i in range(25):
        Lu = (U[0:-2, 1:-1] + U[1:-1, 0:-2] - 4 * U[1:-1, 1:-1] + U[1:-1, 2:] +
              U[2:, 1:-1])
        Lv = (V[0:-2, 1:-1] + V[1:-1, 0:-2] - 4 * V[1:-1, 1:-1] + V[1:-1, 2:] +
              V[2:, 1:-1])
        uvv = u * v * v
        u += Du * Lu - uvv + F * (1 - u)
        v += Dv * Lv + uvv - (F + k) * v

    grd.cellColors(V.ravel(), cmap='ocean_r').mapCellsToPoints()
    newpts = grd.points()
    newpts[:, 2] = grd.getPointArray('CellScalars') * 25  # assign z
コード例 #4
0
from vtkplotter import Latex, Point, show

# https://matplotlib.org/tutorials/text/mathtext.html

latex1 = r'x= \frac{ - b \pm \sqrt {b^2 - 4ac} }{2a}'
latex2 = r'\mathcal{A}\mathrm{sin}(2 \omega t)'
latex3 = r'I(Y | X)=\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \left(\frac{p(x)}{p(x, y)}\right)'
latex4 = r'\Gamma_{\epsilon}(x)=\left[1-e^{-2 \pi \epsilon}\right]^{1-x} \prod_{n=0}^{\infty} \frac{1-\exp (-2 \pi \epsilon(n+1))}{1-\exp (-2 \pi \epsilon(x+n))}'
latex5 = r'\left( \begin{array}{l}{c t^{\prime}} \\ {x^{\prime}} \\ {y^{\prime}} \\ {z^{\prime}}\end{array}\right)=\left( \begin{array}{cccc}{\gamma} & {-\gamma \beta} & {0} & {0} \\ {-\gamma \beta} & {\gamma} & {0} & {0} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {1}\end{array}\right) \left( \begin{array}{l}{c t} \\ {x} \\ {y} \\ {z}\end{array}\right)'
latex6 = r'\mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}'
latex7 = r'x \mathrm{(arb. units)}'

l = Latex(latex4,
          s=1,
          c='white',
          bg='',
          alpha=0.9,
          usetex=False,
          fromweb=False)
l.crop(0.3, 0.3)  # crop top and bottom 30%
l.pos(2, 0, 0)

p = Point()
box = l.box()  # return the bounding box of an actor

show(p, l, box, axes=8)
コード例 #5
0
ファイル: latex.py プロジェクト: myfreebrain/vtkplotter
from vtkplotter import Latex, Cube, Point, show

# https://matplotlib.org/tutorials/text/mathtext.html

latex1 = r'x= \frac{ - b \pm \sqrt {b^2 - 4ac} }{2a}'
latex2 = r'$\mathcal{A}\mathrm{sin}(2 \omega t)$'
latex3 = r'I(Y | X)=\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \left(\frac{p(x)}{p(x, y)}\right)'
latex4 = r'\Gamma_{\epsilon}(x)=\left[1-e^{-2 \pi \epsilon}\right]^{1-x} \prod_{n=0}^{\infty} \frac{1-\exp (-2 \pi \epsilon(n+1))}{1-\exp (-2 \pi \epsilon(x+n))}'
latex5 = r'\left( \begin{array}{l}{c t^{\prime}} \\ {x^{\prime}} \\ {y^{\prime}} \\ {z^{\prime}}\end{array}\right)=\left( \begin{array}{cccc}{\gamma} & {-\gamma \beta} & {0} & {0} \\ {-\gamma \beta} & {\gamma} & {0} & {0} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {1}\end{array}\right) \left( \begin{array}{l}{c t} \\ {x} \\ {y} \\ {z}\end{array}\right)'
latex6 = r'\mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}'
latex7 = r'x~\mathrm{(arb. units)}'

p = Point()
c = Cube().wire()

l = Latex(latex5, s=1, c='white', bg='', alpha=0.9,
          fromweb=False).addPos(4, 0, -1)

show(p, c, l, axes=8)
コード例 #6
0
ファイル: latex.py プロジェクト: marineanalytica/vtkplotter
from vtkplotter import Latex

# https://matplotlib.org/tutorials/text/mathtext.html

latex1 = r'x= \frac{ - b \pm \sqrt {b^2 - 4ac} }{2a}'
latex2 = r'\mathcal{A}\mathrm{sin}(2 \omega t)'
latex3 = r'I(Y | X)=\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \left(\frac{p(x)}{p(x, y)}\right)'
latex4 = r'\Gamma_{\epsilon}(x)=\left[1-e^{-2 \pi \epsilon}\right]^{1-x} \prod_{n=0}^{\infty} \frac{1-\exp (-2 \pi \epsilon(n+1))}{1-\exp (-2 \pi \epsilon(x+n))}'
latex5 = r'\left( \begin{array}{l}{c t^{\prime}} \\ {x^{\prime}} \\ {y^{\prime}} \\ {z^{\prime}}\end{array}\right)=\left( \begin{array}{cccc}{\gamma} & {-\gamma \beta} & {0} & {0} \\ {-\gamma \beta} & {\gamma} & {0} & {0} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {1}\end{array}\right) \left( \begin{array}{l}{c t} \\ {x} \\ {y} \\ {z}\end{array}\right)'
latex6 = r'\mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}'
latex7 = r'x \mathrm{(arb. units)}'

ltx = Latex(latex4,
            s=1,
            c='darkblue',
            bg='',
            alpha=0.9,
            usetex=False,
            fromweb=False)
ltx.crop(0.3, 0.3)  # crop top and bottom 30%
ltx.pos(2, 0, 0)

ltx.show(axes=1)