コード例 #1
0
def Stack_spec_normwmean(spec,redshifts, wv):

    flgrid=np.zeros([len(spec),len(wv)])
    errgrid=np.zeros([len(spec),len(wv)])
    for i in range(len(spec)):
        wave, flux, error = np.array(Readfile(spec[i], 1))
        wave /= (1 + redshifts[i])
        mask = np.array([wave[0] < U < wave[-1] for U in wv])
        ifl=interp1d(wave,flux)
        ier=interp1d(wave,error)
        reg = np.arange(4000, 4210, 1)
        Cr = np.trapz(ifl(reg), reg)
        flgrid[i][mask] = ifl(wv[mask]) / Cr
        errgrid[i][mask] = ier(wv[mask]) / Cr
    ################

    flgrid=np.transpose(flgrid)
    errgrid=np.transpose(errgrid)
    weigrid=errgrid**(-2)
    infmask=np.isinf(weigrid)
    weigrid[infmask]=0
    ################

    stack,err=np.zeros([2,len(wv)])
    for i in range(len(wv)):
        stack[i]=np.sum(flgrid[i]*weigrid[[i]])/np.sum(weigrid[i])
        err[i]=1/np.sqrt(np.sum(weigrid[i]))
    ################
    ###take out nans

    IDX=[U for U in range(len(wv)) if stack[U] > 0]

    return wv[IDX], stack[IDX], err[IDX]
コード例 #2
0
def Analyze_JWST_LH(
        chifits,
        specz,
        metal,
        age,
        tau,
        age_conv='/fdata/scratch/vestrada78840/data/tau_scale_nirspec.dat'):
    ####### Get maximum age
    max_age = Oldest_galaxy(specz)

    ####### Read in file
    chi = np.load(chifits).T

    chi[:, len(age[age <= max_age]):, :] = 1E5

    ####### Get scaling factor for tau reshaping
    ultau = np.append(0, np.power(10, np.array(tau)[1:] - 9))

    scale = Readfile(age_conv)

    overhead = np.zeros(len(scale)).astype(int)
    for i in range(len(scale)):
        amt = []
        for ii in range(len(age)):
            if age[ii] > scale[i][-1]:
                amt.append(1)
        overhead[i] = sum(amt)

    ######## Reshape likelihood to get average age instead of age when marginalized
    newchi = np.zeros(chi.shape)

    for i in range(len(chi)):
        if i == 0:
            newchi[i] = chi[i]
        else:
            frame = interp2d(metal, scale[i], chi[i])(metal,
                                                      age[:-overhead[i]])
            newchi[i] = np.append(frame,
                                  np.repeat([np.repeat(1E5, len(metal))],
                                            overhead[i],
                                            axis=0),
                                  axis=0)

    ####### Create normalize probablity marginalized over tau
    P = np.exp(-newchi.T.astype(np.float128) / 2)

    prob = np.trapz(P, ultau, axis=2)
    C = np.trapz(np.trapz(prob, age, axis=1), metal)

    prob /= C

    #### Get Z and t posteriors

    PZ = np.trapz(prob, age, axis=1)
    Pt = np.trapz(prob.T, metal, axis=1)

    return prob.T, PZ, Pt
コード例 #3
0
    infmask=np.isinf(weigrid)
    weigrid[infmask]=0
    ################

    stack,err=np.zeros([2,len(wv)])
    for i in range(len(wv)):
        stack[i]=np.sum(flgrid[i]*weigrid[[i]])/np.sum(weigrid[i])
        err[i]=1/np.sqrt(np.sum(weigrid[i]))
    ################
    ###take out nans

    IDX=[U for U in range(len(wv)) if stack[U] > 0]

    return wv[IDX], stack[IDX], err[IDX]

ids,lmass,rshift=np.array(Readfile('masslist_sep28.dat',1,is_float=False))
lmass,rshift=np.array([lmass,rshift]).astype(float)
nlist=glob('spec_stacks/*')

IDS=[]

for i in range(len(ids)):
    if 10.87<lmass[i] and 1<rshift[i]<1.75:
        IDS.append(i)

speclist=[]
for i in range(len(ids[IDS])):
    for ii in range(len(nlist)):
        if ids[IDS][i]==nlist[ii][12:18]:
            speclist.append(nlist[ii])
コード例 #4
0
    stack, err = np.zeros([2, len(wv)])
    for i in range(len(wv)):
        stack[i] = np.sum(flgrid[i] * weigrid[[i]]) / np.sum(weigrid[i])
        err[i] = 1 / np.sqrt(np.sum(weigrid[i]))
    ################
    ###take out nans

    # IDX = [U for U in range(len(wv)) if stack[U] > 0]

    return wv, stack, err


"""get galaxies"""
###get list of spectra
ids, speclist, lmass, rshift = np.array(
    Readfile('masslist_dec8.dat', 1, is_float=False))
lmass, rshift = np.array([lmass, rshift]).astype(float)

IDS = []

for i in range(len(ids)):
    if 1 <= rshift[i] <= 1.75:
        IDS.append(i)

metal = np.array([
    0.0020, 0.0025, 0.0031, 0.0039, 0.0049, 0.0061, 0.0068, 0.0077, 0.0085,
    0.0096, 0.0106, 0.012, 0.0132, 0.014, 0.0150, 0.0164, 0.018, 0.019, 0.021,
    0.024, 0.027, 0.03
])
age = [
    0.5, 0.57, 0.65, 0.74, 0.84, 0.96, 1.1, 1.25, 1.42, 1.62, 1.85, 2.11, 2.4,
コード例 #5
0
def Mag(band):
    magnitude=25-2.5*np.log10(band)
    return magnitude

cat_data=Table.read('../../../Clear_data/goodsn_3dhst.v4.3.cat', format='ascii')
IDS=np.array(cat_data.field('id'))
ra=np.array(cat_data.field('ra'))
dec=np.array(cat_data.field('dec'))
J=np.array(cat_data.field('f_F125W'))
star=np.array(cat_data.field('class_star'))

fast_data=fits.open('../../../Desktop/catalogs_for_CLEAR/goodsn_3dhst.v4.1.cats/Fast/goodsn_3dhst.v4.1.fout.FITS')[1].data
lmass=np.array(fast_data.field('lmass'))


RF_dat=Readfile('../../../Desktop/catalogs_for_CLEAR/goodsn_3dhst.v4.1.cats/RF_colors/goodsn_3dhst.v4.1.master.RF',27)
ids=np.array(RF_dat[0])
z=np.array(RF_dat[1])
u=np.array(RF_dat[3])
v=np.array(RF_dat[7])
j=np.array(RF_dat[9])

######Get colors

uv=Mag(u)-Mag(v)
vj=Mag(v)-Mag(j)


print len(IDS)-len(ids)

INDEX1=[]
コード例 #6
0
import numpy as np
from vtl.Readfile import Readfile
from scipy.interpolate import interp1d
from glob import glob
import matplotlib.pyplot as plt
import seaborn as sea
from spec_id import Scale_model
sea.set(style='white')
sea.set(style='ticks')
sea.set_style({"xtick.direction": "in", "ytick.direction": "in"})
"""read in data"""
###read in data
speclist,zsmax,zschi,zs,zsl,zsh,zpsmax,zpschi,\
zps,zpsl,zpsh=np.array(Readfile('stack_redshifts_10-6.dat',is_float=False))
zsmax, zschi, zs, zsl, zsh, zpsmax, zpschi, zps, zpsl, zpsh = np.array(
    [zsmax, zschi, zs, zsl, zsh, zpsmax, zpschi, zps, zpsl,
     zpsh]).astype(float)

# print speclist[0][18:24]
### set index and file path to models
IDS = 45
fp = '/Users/Vince.ec/fsps_models_for_fit/fsps_spec/'
print speclist[IDS][18:24]

### read data and models
mwv, mfl = np.array(Readfile(fp + 'm0.015_a1.5_t8.0_spec.dat'))
wv, fl, er = np.array(Readfile(speclist[IDS]))
"""plotting"""
### zps
w = wv / (1 + zsmax[IDS])
Mfl = interp1d(mwv, mfl)(w)
コード例 #7
0
def MC_fit(galaxy,
           metal,
           age,
           tau,
           sim_m,
           sim_a,
           sim_t,
           specz,
           name,
           repeats=1000,
           delayed_tau=True,
           age_conv='/fdata/scratch/vestrada78840/data/tau_scale_ntau.dat'):
    mlist = np.zeros(repeats)
    alist = np.zeros(repeats)

    ultau = np.append(0, np.power(10, np.array(tau[1:]) - 9))
    spec = Gen_sim(galaxy, specz, sim_m, sim_a, sim_t, delayed_tau=delayed_tau)

    ###############Get model list
    mfl = np.zeros([len(metal) * len(age) * len(tau), len(spec.gal_wv_rf)])
    for i in range(len(metal)):
        for ii in range(len(age)):
            for iii in range(len(tau)):
                spec.Sim_spec(metal[i], age[ii], tau[iii])
                mfl[i * len(age) * len(tau) + ii * len(tau) + iii] = spec.mfl

    convtau = np.array([
        0, 8.0, 8.3, 8.48, 8.6, 8.7, 8.78, 8.85, 8.9, 8.95, 9.0, 9.04, 9.08,
        9.11, 9.15, 9.18, 9.2, 9.23, 9.26, 9.28, 9.3, 9.32, 9.34, 9.36, 9.38,
        9.4, 9.41, 9.43, 9.45, 9.46, 9.48
    ])
    convage = np.arange(.5, 6.1, .1)

    mt = [U for U in range(len(convtau)) if convtau[U] in tau]
    ma = [
        U for U in range(len(convage))
        if np.round(convage[U], 1) in np.round(age, 1)
    ]

    convtable = Readfile(age_conv)
    scale = convtable[mt[0]:mt[-1] + 1, ma[0]:ma[-1] + 1]

    overhead = np.zeros(len(scale)).astype(int)
    for i in range(len(scale)):
        amt = []
        for ii in range(len(age)):
            if age[ii] > scale[i][-1]:
                amt.append(1)
        overhead[i] = sum(amt)

    for xx in range(repeats):
        spec.Perturb_flux()

        chi = np.sum(((spec.flx_err - mfl) / spec.gal_er)**2,
                     axis=1).reshape([len(metal),
                                      len(age),
                                      len(tau)]).astype(np.float128).T

        ######## Reshape likelihood to get average age instead of age when marginalized
        newchi = np.zeros(chi.shape)

        for i in range(len(chi)):
            if i == 0:
                newchi[i] = chi[i]
            else:
                frame = interp2d(metal, scale[i], chi[i])(metal,
                                                          age[:-overhead[i]])
                newchi[i] = np.append(frame,
                                      np.repeat([np.repeat(1E5, len(metal))],
                                                overhead[i],
                                                axis=0),
                                      axis=0)

        ####### Create normalize probablity marginalized over tau
        prob = np.exp(-newchi.T.astype(np.float128) / 2)

        P = np.trapz(prob, ultau, axis=2)
        C = np.trapz(np.trapz(P, age, axis=1), metal)

        #### Get Z and t posteriors
        PZ = np.trapz(P / C, age, axis=1)
        Pt = np.trapz(P.T / C, metal, axis=1)

        mlist[xx], ml, mh = Median_w_Error_cont(PZ, metal)
        alist[xx], ml, mh = Median_w_Error_cont(Pt, age)

    np.save('/home/vestrada78840/mcerr/' + name, [mlist, alist])

    return
コード例 #8
0
def Analyze_LH_cont_feat(
        contfits,
        featfits,
        specz,
        metal,
        age,
        tau,
        age_conv='/fdata/scratch/vestrada78840/data/tau_scale_ntau.dat'):
    ####### Get maximum age
    max_age = Oldest_galaxy(specz)

    ####### Read in file
    Cchi = np.load(contfits).T
    Fchi = np.load(featfits).T

    Fchi[:, len(age[age <= max_age]):, :] = 1E5
    Cchi[:, len(age[age <= max_age]):, :] = 1E5

    ####### Get scaling factor for tau reshaping
    ultau = np.append(0, np.power(10, np.array(tau)[1:] - 9))

    convtau = np.array([
        0, 8.0, 8.3, 8.48, 8.6, 8.7, 8.78, 8.85, 8.9, 8.95, 9.0, 9.04, 9.08,
        9.11, 9.15, 9.18, 9.2, 9.23, 9.26, 9.28, 9.3, 9.32, 9.34, 9.36, 9.38,
        9.4, 9.41, 9.43, 9.45, 9.46, 9.48
    ])
    convage = np.arange(.5, 6.1, .1)

    mt = [U for U in range(len(convtau)) if convtau[U] in tau]
    ma = [
        U for U in range(len(convage))
        if np.round(convage[U], 1) in np.round(age, 1)
    ]

    convtable = Readfile(age_conv)
    scale = convtable[mt[0]:mt[-1] + 1, ma[0]:ma[-1] + 1]

    overhead = np.zeros(len(scale)).astype(int)
    for i in range(len(scale)):
        amt = []
        for ii in range(len(age)):
            if age[ii] > scale[i][-1]:
                amt.append(1)
        overhead[i] = sum(amt)

    ######## Reshape likelihood to get average age instead of age when marginalized
    newCchi = np.zeros(Cchi.shape)
    newFchi = np.zeros(Fchi.shape)

    for i in range(len(Cchi)):
        if i == 0:
            newCchi[i] = Cchi[i]
            newFchi[i] = Fchi[i]
        else:
            cframe = interp2d(metal, scale[i], Cchi[i])(metal,
                                                        age[:-overhead[i]])
            newCchi[i] = np.append(cframe,
                                   np.repeat([np.repeat(1E5, len(metal))],
                                             overhead[i],
                                             axis=0),
                                   axis=0)

            fframe = interp2d(metal, scale[i], Fchi[i])(metal,
                                                        age[:-overhead[i]])
            newFchi[i] = np.append(fframe,
                                   np.repeat([np.repeat(1E5, len(metal))],
                                             overhead[i],
                                             axis=0),
                                   axis=0)

    ####### Create normalize probablity marginalized over tau
    cprob = np.exp(-newCchi.T.astype(np.float128) / 2)

    Pc = np.trapz(cprob, ultau, axis=2)
    Cc = np.trapz(np.trapz(Pc, age, axis=1), metal)

    fprob = np.exp(-newFchi.T.astype(np.float128) / 2)

    Pf = np.trapz(fprob, ultau, axis=2)
    Cf = np.trapz(np.trapz(Pf, age, axis=1), metal)

    comb_prob = cprob / Cc * fprob / Cf

    prob = np.trapz(comb_prob, ultau, axis=2)
    C0 = np.trapz(np.trapz(prob, age, axis=1), metal)
    prob /= C0

    #### Get Z and t posteriors

    PZ = np.trapz(prob, age, axis=1)
    Pt = np.trapz(prob.T, metal, axis=1)

    return prob.T, PZ, Pt
コード例 #9
0

age = [0.5, 0.57, 0.65, 0.74, 0.84, 0.96, 1.1, 1.25, 1.42,
       1.62, 1.85, 2.11, 2.4, 2.74, 3.12, 3.56, 4.05, 4.62, 5.26, 6.0]

modeldat=[]
filepath = '../../../fsps_models_for_fit/models/'
for i in range(len(age)):
    modeldat.append(filepath + 'm0.019_a%s_z1.2_model.dat' % age[i])


d4=np.zeros(len(modeldat))
d4nc=np.zeros(len(modeldat))

for i in range(len(modeldat)):
    w,f,e=np.array(Readfile(modeldat[i],1))
    w/=2.2
    d4[i]=D4000(w,f)
    # plt.plot(w, f)
    mr = [[3910, 3990], [4082, 4122], [4250, 4330], [4830, 4890], [4990, 5030]]

    Mask = np.zeros(len(w))

    for ii in range(len(mr)):
        for iii in range(len(w)):
            if mr[ii][0] <= w[iii] <= mr[ii][1]:
                Mask[iii] = 1

    maskw = np.ma.masked_array(w, Mask)
    x3, x2, x1, x0 = np.ma.polyfit(maskw, f, 3, w=1 / e ** 2)
    C0 = x3 * w ** 3 + x2 * w ** 2 + x1 * w + x0