コード例 #1
0
def baseline_vsone_ratio_matcher_(kpts1,
                                  vecs1,
                                  kpts2,
                                  vecs2,
                                  dlen_sqrd2,
                                  cfgdict={}):
    r"""
    Args:
        vecs1 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        vecs2 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        kpts1 (ndarray[float32_t, ndim=2]):  keypoints
        kpts2 (ndarray[float32_t, ndim=2]):  keypoints

    Ignore:
        %pylab qt4
        import plottool as pt
        pt.imshow(rchip1)
        pt.draw_kpts2(kpts1)

        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
    """
    #import vtool as vt
    sver_xy_thresh = cfgdict.get('sver_xy_thresh', .01)
    ratio_thresh = cfgdict.get('ratio_thresh', .625)
    #ratio_thresh =  .99
    # GET NEAREST NEIGHBORS
    fx2_to_fx1, fx2_to_dist = assign_nearest_neighbors(vecs1, vecs2, K=2)
    assigntup = matching.assign_unconstrained_matches(fx2_to_fx1, fx2_to_dist)
    fx2_match, fx1_match, fx1_norm, match_dist, norm_dist = assigntup
    fm_ORIG = np.vstack((fx1_match, fx2_match)).T
    fs_ORIG = 1 - np.divide(match_dist, norm_dist)
    # APPLY RATIO TEST
    fm_RAT, fs_RAT, fm_norm_RAT = matching.ratio_test(fx2_match, fx1_match,
                                                      fx1_norm, match_dist,
                                                      norm_dist, ratio_thresh)
    # SPATIAL VERIFICATION FILTER
    #with ut.EmbedOnException():
    match_weights = np.ones(len(fm_RAT))
    svtup = sver.spatially_verify_kpts(kpts1,
                                       kpts2,
                                       fm_RAT,
                                       sver_xy_thresh,
                                       dlen_sqrd2,
                                       match_weights=match_weights)
    if svtup is not None:
        (homog_inliers, homog_errors, H_RAT) = svtup[0:3]
    else:
        H_RAT = np.eye(3)
        homog_inliers = []
    fm_SV = fm_RAT[homog_inliers]
    fs_SV = fs_RAT[homog_inliers]
    fm_norm_SV = fm_norm_RAT[homog_inliers]

    base_tup = (fm_ORIG, fs_ORIG, fm_RAT, fs_RAT, fm_SV, fs_SV, H_RAT)
    base_meta = (fm_norm_RAT, fm_norm_SV)
    return base_tup, base_meta
コード例 #2
0
def spatially_constrianed_matcher_(kpts1, vecs1, kpts2, vecs2, dlen_sqrd2, H_RAT, cfgdict={}):
    # import vtool as vt

    # match_xy_thresh = .1
    # sver_xy_thresh = .01
    # ratio_thresh2 = .8
    # Observation, scores don't change above K=7
    # on easy test case
    # search_K = 7  # 3
    search_K = cfgdict.get("search_K", 7)
    ratio_thresh2 = cfgdict.get("ratio_thresh2", 0.8)
    sver_xy_thresh2 = cfgdict.get("sver_xy_thresh2", 0.01)
    normalizer_mode = cfgdict.get("normalizer_mode", "far")
    match_xy_thresh = cfgdict.get("match_xy_thresh", 0.1)

    # ASSIGN CANDIDATES
    # Get candidate nearest neighbors
    fx2_to_fx1, fx2_to_dist = assign_nearest_neighbors(vecs1, vecs2, K=search_K)

    # COMPUTE CONSTRAINTS
    # normalizer_mode = 'far'
    constrain_tup = spatially_constrain_matches(
        dlen_sqrd2, kpts1, kpts2, H_RAT, fx2_to_fx1, fx2_to_dist, match_xy_thresh, normalizer_mode=normalizer_mode
    )
    (fm_SC, fm_norm_SC, match_dist, norm_dist) = constrain_tup
    fx2_match = fm_SC.T[1]
    fx1_match = fm_SC.T[1]
    fx1_norm = fm_norm_SC.T[1]

    fm_SCR, fs_SCR, fm_norm_SCR = matching.ratio_test(
        fx2_match, fx1_match, fx1_norm, match_dist, norm_dist, ratio_thresh2
    )
    fs_SC = 1 - np.divide(match_dist, norm_dist)  # NOQA
    # fm_SCR, fs_SCR, fm_norm_SCR = ratio_test2(match_dist, norm_dist, fm_SC,
    #                                                fm_norm_SC, ratio_thresh2)

    # Another round of verification
    match_weights = np.ones(len(fm_SCR))
    svtup = sver.spatially_verify_kpts(kpts1, kpts2, fm_SCR, sver_xy_thresh2, dlen_sqrd2, match_weights=match_weights)
    if svtup is not None:
        (homog_inliers, homog_errors, H_SCR) = svtup[0:3]
    else:
        H_SCR = np.eye(3)
        homog_inliers = []
    fm_SCRSV = fm_SCR[homog_inliers]
    fs_SCRSV = fs_SCR[homog_inliers]

    fm_norm_SVSCR = fm_norm_SCR[homog_inliers]

    nexttup = (fm_SC, fs_SC, fm_SCR, fs_SCR, fm_SCRSV, fs_SCRSV, H_SCR)
    next_meta = (fm_norm_SC, fm_norm_SCR, fm_norm_SVSCR)
    return nexttup, next_meta
コード例 #3
0
def baseline_vsone_ratio_matcher_(kpts1, vecs1, kpts2, vecs2, dlen_sqrd2, cfgdict={}):
    r"""
    Args:
        vecs1 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        vecs2 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        kpts1 (ndarray[float32_t, ndim=2]):  keypoints
        kpts2 (ndarray[float32_t, ndim=2]):  keypoints

    Ignore:
        %pylab qt4
        import plottool as pt
        pt.imshow(rchip1)
        pt.draw_kpts2(kpts1)

        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
    """
    # import vtool as vt
    sver_xy_thresh = cfgdict.get("sver_xy_thresh", 0.01)
    ratio_thresh = cfgdict.get("ratio_thresh", 0.625)
    # ratio_thresh =  .99
    # GET NEAREST NEIGHBORS
    fx2_to_fx1, fx2_to_dist = assign_nearest_neighbors(vecs1, vecs2, K=2)
    assigntup = matching.assign_unconstrained_matches(fx2_to_fx1, fx2_to_dist)
    fx2_match, fx1_match, fx1_norm, match_dist, norm_dist = assigntup
    fm_ORIG = np.vstack((fx1_match, fx2_match)).T
    fs_ORIG = 1 - np.divide(match_dist, norm_dist)
    # APPLY RATIO TEST
    fm_RAT, fs_RAT, fm_norm_RAT = matching.ratio_test(
        fx2_match, fx1_match, fx1_norm, match_dist, norm_dist, ratio_thresh
    )
    # SPATIAL VERIFICATION FILTER
    # with ut.EmbedOnException():
    match_weights = np.ones(len(fm_RAT))
    svtup = sver.spatially_verify_kpts(kpts1, kpts2, fm_RAT, sver_xy_thresh, dlen_sqrd2, match_weights=match_weights)
    if svtup is not None:
        (homog_inliers, homog_errors, H_RAT) = svtup[0:3]
    else:
        H_RAT = np.eye(3)
        homog_inliers = []
    fm_SV = fm_RAT[homog_inliers]
    fs_SV = fs_RAT[homog_inliers]
    fm_norm_SV = fm_norm_RAT[homog_inliers]

    base_tup = (fm_ORIG, fs_ORIG, fm_RAT, fs_RAT, fm_SV, fs_SV, H_RAT)
    base_meta = (fm_norm_RAT, fm_norm_SV)
    return base_tup, base_meta
コード例 #4
0
def spatially_constrianed_matcher_(kpts1,
                                   vecs1,
                                   kpts2,
                                   vecs2,
                                   dlen_sqrd2,
                                   H_RAT,
                                   cfgdict={}):
    #import vtool as vt

    #match_xy_thresh = .1
    #sver_xy_thresh = .01
    #ratio_thresh2 = .8
    # Observation, scores don't change above K=7
    # on easy test case
    #search_K = 7  # 3
    search_K = cfgdict.get('search_K', 7)
    ratio_thresh2 = cfgdict.get('ratio_thresh2', .8)
    sver_xy_thresh2 = cfgdict.get('sver_xy_thresh2', .01)
    normalizer_mode = cfgdict.get('normalizer_mode', 'far')
    match_xy_thresh = cfgdict.get('match_xy_thresh', .1)

    # ASSIGN CANDIDATES
    # Get candidate nearest neighbors
    fx2_to_fx1, fx2_to_dist = assign_nearest_neighbors(vecs1,
                                                       vecs2,
                                                       K=search_K)

    # COMPUTE CONSTRAINTS
    #normalizer_mode = 'far'
    constrain_tup = spatially_constrain_matches(
        dlen_sqrd2,
        kpts1,
        kpts2,
        H_RAT,
        fx2_to_fx1,
        fx2_to_dist,
        match_xy_thresh,
        normalizer_mode=normalizer_mode)
    (fm_SC, fm_norm_SC, match_dist, norm_dist) = constrain_tup
    fx2_match = fm_SC.T[1]
    fx1_match = fm_SC.T[1]
    fx1_norm = fm_norm_SC.T[1]

    fm_SCR, fs_SCR, fm_norm_SCR = matching.ratio_test(fx2_match, fx1_match,
                                                      fx1_norm, match_dist,
                                                      norm_dist, ratio_thresh2)
    fs_SC = 1 - np.divide(match_dist, norm_dist)  # NOQA
    #fm_SCR, fs_SCR, fm_norm_SCR = ratio_test2(match_dist, norm_dist, fm_SC,
    #                                                fm_norm_SC, ratio_thresh2)

    # Another round of verification
    match_weights = np.ones(len(fm_SCR))
    svtup = sver.spatially_verify_kpts(kpts1,
                                       kpts2,
                                       fm_SCR,
                                       sver_xy_thresh2,
                                       dlen_sqrd2,
                                       match_weights=match_weights)
    if svtup is not None:
        (homog_inliers, homog_errors, H_SCR) = svtup[0:3]
    else:
        H_SCR = np.eye(3)
        homog_inliers = []
    fm_SCRSV = fm_SCR[homog_inliers]
    fs_SCRSV = fs_SCR[homog_inliers]

    fm_norm_SVSCR = fm_norm_SCR[homog_inliers]

    nexttup = (fm_SC, fs_SC, fm_SCR, fs_SCR, fm_SCRSV, fs_SCRSV, H_SCR)
    next_meta = (fm_norm_SC, fm_norm_SCR, fm_norm_SVSCR)
    return nexttup, next_meta
コード例 #5
0
ファイル: matching.py プロジェクト: Erotemic/vtool
def vsone_feature_matching(kpts1, vecs1, kpts2, vecs2, dlen_sqrd2, cfgdict={},
                           flann1=None, flann2=None, verbose=None):
    r"""
    Actual logic for matching
    Args:
        vecs1 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        vecs2 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        kpts1 (ndarray[float32_t, ndim=2]):  keypoints
        kpts2 (ndarray[float32_t, ndim=2]):  keypoints

    Ignore:
        >>> from vtool.matching import *  # NOQA
        %pylab qt4
        import plottool as pt
        pt.imshow(rchip1)
        pt.draw_kpts2(kpts1)

        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
    """
    import vtool as vt
    import pyflann
    from vtool import spatial_verification as sver
    #import vtool as vt
    sver_xy_thresh = cfgdict.get('sver_xy_thresh', .01)
    ratio_thresh   = cfgdict.get('ratio_thresh', .625)
    refine_method  = cfgdict.get('refine_method', 'homog')
    symmetric      = cfgdict.get('symmetric', False)
    K              = cfgdict.get('K', 1)
    Knorm          = cfgdict.get('Knorm', 1)
    #ratio_thresh =  .99
    # GET NEAREST NEIGHBORS
    checks = 800
    #pseudo_max_dist_sqrd = (np.sqrt(2) * 512) ** 2
    #pseudo_max_dist_sqrd = 2 * (512 ** 2)
    if verbose is None:
        verbose = True

    flann_params = {'algorithm': 'kdtree', 'trees': 8}
    if flann1 is None:
        flann1 = vt.flann_cache(vecs1, flann_params=flann_params, verbose=verbose)

    #print('symmetric = %r' % (symmetric,))
    if symmetric:
        if flann2 is None:
            flann2 = vt.flann_cache(vecs2, flann_params=flann_params, verbose=verbose)

    try:
        try:
            num_neighbors = K + Knorm
            fx2_to_fx1, fx2_to_dist = normalized_nearest_neighbors(flann1, vecs2, num_neighbors, checks)
            #fx2_to_fx1, _fx2_to_dist = flann1.nn_index(vecs2, num_neighbors=K, checks=checks)
            if symmetric:
                fx1_to_fx2, fx1_to_dist = normalized_nearest_neighbors(flann2, vecs1, K, checks)

        except pyflann.FLANNException:
            print('vecs1.shape = %r' % (vecs1.shape,))
            print('vecs2.shape = %r' % (vecs2.shape,))
            print('vecs1.dtype = %r' % (vecs1.dtype,))
            print('vecs2.dtype = %r' % (vecs2.dtype,))
            raise
        if symmetric:
            is_symmetric = flag_symmetric_matches(fx2_to_fx1, fx1_to_fx2)
            fx2_to_fx1 = fx2_to_fx1.compress(is_symmetric, axis=0)
            fx2_to_dist = fx2_to_dist.compress(is_symmetric, axis=0)

        assigntup = assign_unconstrained_matches(fx2_to_fx1, fx2_to_dist)

        fx2_match, fx1_match, fx1_norm, match_dist, norm_dist = assigntup
        fm_ORIG = np.vstack((fx1_match, fx2_match)).T
        fs_ORIG = 1 - np.divide(match_dist, norm_dist)
        # APPLY RATIO TEST
        fm_RAT, fs_RAT, fm_norm_RAT = ratio_test(fx2_match, fx1_match, fx1_norm,
                                                 match_dist, norm_dist,
                                                 ratio_thresh)

        # SPATIAL VERIFICATION FILTER
        #with ut.EmbedOnException():
        match_weights = np.ones(len(fm_RAT))
        svtup = sver.spatially_verify_kpts(kpts1, kpts2, fm_RAT, sver_xy_thresh,
                                           dlen_sqrd2, match_weights=match_weights,
                                           refine_method=refine_method)
        if svtup is not None:
            (homog_inliers, homog_errors, H_RAT) = svtup[0:3]
        else:
            H_RAT = np.eye(3)
            homog_inliers = []
        fm_RAT_SV = fm_RAT.take(homog_inliers, axis=0)
        fs_RAT_SV = fs_RAT.take(homog_inliers, axis=0)
        fm_norm_RAT_SV = fm_norm_RAT[homog_inliers]

        top_percent = .5
        top_idx = ut.take_percentile(fx2_to_dist.T[0].argsort(), top_percent)
        fm_TOP = fm_ORIG.take(top_idx, axis=0)
        fs_TOP = fx2_to_dist.T[0].take(top_idx)
        #match_weights = np.ones(len(fm_TOP))
        #match_weights = (np.exp(fs_TOP) / np.sqrt(np.pi * 2))
        match_weights = 1 - fs_TOP
        #match_weights = np.ones(len(fm_TOP))
        svtup = sver.spatially_verify_kpts(kpts1, kpts2, fm_TOP, sver_xy_thresh,
                                           dlen_sqrd2, match_weights=match_weights,
                                           refine_method=refine_method)
        if svtup is not None:
            (homog_inliers, homog_errors, H_TOP) = svtup[0:3]
            np.sqrt(homog_errors[0] / dlen_sqrd2)
        else:
            H_TOP = np.eye(3)
            homog_inliers = []
        fm_TOP_SV = fm_TOP.take(homog_inliers, axis=0)
        fs_TOP_SV = fs_TOP.take(homog_inliers, axis=0)

        matches = {
            'ORIG'   : MatchTup2(fm_ORIG, fs_ORIG),
            'RAT'    : MatchTup3(fm_RAT, fs_RAT, fm_norm_RAT),
            'RAT+SV' : MatchTup3(fm_RAT_SV, fs_RAT_SV, fm_norm_RAT_SV),
            'TOP'    : MatchTup2(fm_TOP, fs_TOP),
            'TOP+SV' : MatchTup2(fm_TOP_SV, fs_TOP_SV),
        }
        output_metdata = {
            'H_RAT': H_RAT,
            'H_TOP': H_TOP,
        }

    except MatchingError:
        fm_ERR = np.empty((0, 2), dtype=np.int32)
        fs_ERR = np.empty((0, 1), dtype=np.float32)
        H_ERR = np.eye(3)
        matches = {
            'ORIG'   : MatchTup2(fm_ERR, fs_ERR),
            'RAT'    : MatchTup3(fm_ERR, fs_ERR, fm_ERR),
            'RAT+SV' : MatchTup3(fm_ERR, fs_ERR, fm_ERR),
            'TOP'    : MatchTup2(fm_ERR, fs_ERR),
            'TOP+SV' : MatchTup2(fm_ERR, fs_ERR),
        }
        output_metdata = {
            'H_RAT': H_ERR,
            'H_TOP': H_ERR,
        }

    return matches, output_metdata
コード例 #6
0
def vsone_feature_matching(kpts1,
                           vecs1,
                           kpts2,
                           vecs2,
                           dlen_sqrd2,
                           cfgdict={},
                           flann1=None,
                           flann2=None,
                           verbose=None):
    r"""
    Actual logic for matching
    Args:
        vecs1 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        vecs2 (ndarray[uint8_t, ndim=2]): SIFT descriptors
        kpts1 (ndarray[float32_t, ndim=2]):  keypoints
        kpts2 (ndarray[float32_t, ndim=2]):  keypoints

    Ignore:
        >>> from vtool.matching import *  # NOQA
        %pylab qt4
        import plottool as pt
        pt.imshow(rchip1)
        pt.draw_kpts2(kpts1)

        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
        pt.show_chipmatch2(rchip1, rchip2, kpts1, kpts2, fm=fm, fs=fs)
    """
    import vtool as vt
    import pyflann
    from vtool import spatial_verification as sver
    #import vtool as vt
    sver_xy_thresh = cfgdict.get('sver_xy_thresh', .01)
    ratio_thresh = cfgdict.get('ratio_thresh', .625)
    refine_method = cfgdict.get('refine_method', 'homog')
    symmetric = cfgdict.get('symmetric', False)
    K = cfgdict.get('K', 1)
    Knorm = cfgdict.get('Knorm', 1)
    #ratio_thresh =  .99
    # GET NEAREST NEIGHBORS
    checks = 800
    #pseudo_max_dist_sqrd = (np.sqrt(2) * 512) ** 2
    #pseudo_max_dist_sqrd = 2 * (512 ** 2)
    if verbose is None:
        verbose = True

    flann_params = {'algorithm': 'kdtree', 'trees': 8}
    if flann1 is None:
        flann1 = vt.flann_cache(vecs1,
                                flann_params=flann_params,
                                verbose=verbose)

    #print('symmetric = %r' % (symmetric,))
    if symmetric:
        if flann2 is None:
            flann2 = vt.flann_cache(vecs2,
                                    flann_params=flann_params,
                                    verbose=verbose)

    try:
        try:
            num_neighbors = K + Knorm
            fx2_to_fx1, fx2_to_dist = normalized_nearest_neighbors(
                flann1, vecs2, num_neighbors, checks)
            #fx2_to_fx1, _fx2_to_dist = flann1.nn_index(vecs2, num_neighbors=K, checks=checks)
            if symmetric:
                fx1_to_fx2, fx1_to_dist = normalized_nearest_neighbors(
                    flann2, vecs1, K, checks)

        except pyflann.FLANNException:
            print('vecs1.shape = %r' % (vecs1.shape, ))
            print('vecs2.shape = %r' % (vecs2.shape, ))
            print('vecs1.dtype = %r' % (vecs1.dtype, ))
            print('vecs2.dtype = %r' % (vecs2.dtype, ))
            raise
        if symmetric:
            is_symmetric = flag_symmetric_matches(fx2_to_fx1, fx1_to_fx2)
            fx2_to_fx1 = fx2_to_fx1.compress(is_symmetric, axis=0)
            fx2_to_dist = fx2_to_dist.compress(is_symmetric, axis=0)

        assigntup = assign_unconstrained_matches(fx2_to_fx1, fx2_to_dist)

        fx2_match, fx1_match, fx1_norm, match_dist, norm_dist = assigntup
        fm_ORIG = np.vstack((fx1_match, fx2_match)).T
        fs_ORIG = 1 - np.divide(match_dist, norm_dist)
        # APPLY RATIO TEST
        fm_RAT, fs_RAT, fm_norm_RAT = ratio_test(fx2_match, fx1_match,
                                                 fx1_norm, match_dist,
                                                 norm_dist, ratio_thresh)

        # SPATIAL VERIFICATION FILTER
        #with ut.EmbedOnException():
        match_weights = np.ones(len(fm_RAT))
        svtup = sver.spatially_verify_kpts(kpts1,
                                           kpts2,
                                           fm_RAT,
                                           sver_xy_thresh,
                                           dlen_sqrd2,
                                           match_weights=match_weights,
                                           refine_method=refine_method)
        if svtup is not None:
            (homog_inliers, homog_errors, H_RAT) = svtup[0:3]
        else:
            H_RAT = np.eye(3)
            homog_inliers = []
        fm_RAT_SV = fm_RAT.take(homog_inliers, axis=0)
        fs_RAT_SV = fs_RAT.take(homog_inliers, axis=0)
        fm_norm_RAT_SV = fm_norm_RAT[homog_inliers]

        top_percent = .5
        top_idx = ut.take_percentile(fx2_to_dist.T[0].argsort(), top_percent)
        fm_TOP = fm_ORIG.take(top_idx, axis=0)
        fs_TOP = fx2_to_dist.T[0].take(top_idx)
        #match_weights = np.ones(len(fm_TOP))
        #match_weights = (np.exp(fs_TOP) / np.sqrt(np.pi * 2))
        match_weights = 1 - fs_TOP
        #match_weights = np.ones(len(fm_TOP))
        svtup = sver.spatially_verify_kpts(kpts1,
                                           kpts2,
                                           fm_TOP,
                                           sver_xy_thresh,
                                           dlen_sqrd2,
                                           match_weights=match_weights,
                                           refine_method=refine_method)
        if svtup is not None:
            (homog_inliers, homog_errors, H_TOP) = svtup[0:3]
            np.sqrt(homog_errors[0] / dlen_sqrd2)
        else:
            H_TOP = np.eye(3)
            homog_inliers = []
        fm_TOP_SV = fm_TOP.take(homog_inliers, axis=0)
        fs_TOP_SV = fs_TOP.take(homog_inliers, axis=0)

        matches = {
            'ORIG': MatchTup2(fm_ORIG, fs_ORIG),
            'RAT': MatchTup3(fm_RAT, fs_RAT, fm_norm_RAT),
            'RAT+SV': MatchTup3(fm_RAT_SV, fs_RAT_SV, fm_norm_RAT_SV),
            'TOP': MatchTup2(fm_TOP, fs_TOP),
            'TOP+SV': MatchTup2(fm_TOP_SV, fs_TOP_SV),
        }
        output_metdata = {
            'H_RAT': H_RAT,
            'H_TOP': H_TOP,
        }

    except MatchingError:
        fm_ERR = np.empty((0, 2), dtype=np.int32)
        fs_ERR = np.empty((0, 1), dtype=np.float32)
        H_ERR = np.eye(3)
        matches = {
            'ORIG': MatchTup2(fm_ERR, fs_ERR),
            'RAT': MatchTup3(fm_ERR, fs_ERR, fm_ERR),
            'RAT+SV': MatchTup3(fm_ERR, fs_ERR, fm_ERR),
            'TOP': MatchTup2(fm_ERR, fs_ERR),
            'TOP+SV': MatchTup2(fm_ERR, fs_ERR),
        }
        output_metdata = {
            'H_RAT': H_ERR,
            'H_TOP': H_ERR,
        }

    return matches, output_metdata