def get_orgres_desc_match_dists(allres, orgtype_list=['false', 'true'], distkey_list=['L2'], verbose=True): r""" computes distances between matching descriptors of orgtypes in allres Args: allres (AllResults): AllResults object orgtype_list (list): of strings denoting the type of results to compare distkey_list (list): list of requested distance types Returns: dict: orgres2_descmatch_dists mapping from orgtype to dicts of distances (ndarrays) Notes: Just SIFT distance seems to have a very interesting property CommandLine: python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --distkeys=fs,lnbnn,bar_L2_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=fs,lnbnn,bar_L2_sift,cos_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --distkeys=fs,lnbnn,bar_L2_sift,cos_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=cos_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --distkeys=fs,lnbnn,bar_L2_sift,cos_sift --show --nosupport python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+siam128 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift --num-top-fs=2 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift --num-top-fs=10 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift --num-top-fs=1000 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+siam128 --num-top-fs=1 Example: >>> # SLOW_DOCTEST >>> from ibeis.expt.results_analyzer import * # NOQA >>> from ibeis.expt import results_all >>> import ibeis >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST') >>> qaid_list = ibs.get_valid_aids(hasgt=True) >>> from ibeis.model import Config >>> cfgdict = ut.argparse_dict(dict(Config.parse_config_items(Config.QueryConfig())), only_specified=True) >>> allres = results_all.get_allres(ibs, qaid_list, cfgdict=cfgdict) >>> # {'feat_type': 'hesaff+siam128'}) >>> orgtype_list = ['false', 'top_true'] >>> verbose = True >>> distkey_list = ut.get_argval('--distkeys', type_=list, default=['fs', 'lnbnn', 'bar_L2_sift']) >>> #distkey_list = ['hist_isect'] >>> #distkey_list = ['L2_sift', 'bar_L2_sift'] >>> # execute function >>> orgres2_descmatch_dists = get_orgres_desc_match_dists(allres, orgtype_list, distkey_list, verbose) >>> #print('orgres2_descmatch_dists = ' + ut.dict_str(orgres2_descmatch_dists, truncate=-1, precision=3)) >>> stats_ = {key: ut.dict_val_map(val, ut.get_stats) for key, val in orgres2_descmatch_dists.items()} >>> print('orgres2_descmatch_dists = ' + ut.dict_str(stats_, truncate=2, precision=3, nl=4)) >>> # ------ VISUALIZE ------------ >>> ut.quit_if_noshow() >>> import vtool as vt >>> # If viewing a large amount of data this might help on OverFlowError >>> #ut.embed() >>> # http://stackoverflow.com/questions/20330475/matplotlib-overflowerror-allocated-too-many-blocks >>> # http://matplotlib.org/1.3.1/users/customizing.html >>> limit_ = len(qaid_list) > 100 >>> if limit_ or True: >>> import matplotlib as mpl >>> mpl.rcParams['agg.path.chunksize'] = 100000 >>> # visualize the descriptor scores >>> for fnum, distkey in enumerate(distkey_list, start=1): >>> encoder = vt.ScoreNormalizer() >>> tn_scores, tp_scores = ut.get_list_column(ut.dict_take(orgres2_descmatch_dists, orgtype_list), distkey) >>> encoder.fit_partitioned(tp_scores, tn_scores, verbose=False) >>> figtitle = 'Descriptor Distance: %r. db=%r\norgtype_list=%r' % (distkey, ibs.get_dbname(), orgtype_list) >>> use_support = not ut.get_argflag('--nosupport') >>> encoder.visualize(figtitle=figtitle, use_stems=not limit_, fnum=fnum, with_normscore=use_support, with_scores=use_support) >>> ut.show_if_requested() """ import vtool as vt orgres2_descmatch_dists = {} desc_dist_xs, other_xs = vt.index_partition(distkey_list, vt.VALID_DISTS) distkey_list1 = ut.list_take(distkey_list, desc_dist_xs) distkey_list2 = ut.list_take(distkey_list, other_xs) for orgtype in orgtype_list: if verbose: print('[rr2] getting orgtype=%r distances between vecs' % orgtype) orgres = allres.get_orgtype(orgtype) qaids = orgres.qaids aids = orgres.aids # DO distance that need real computation if len(desc_dist_xs) > 0: try: stacked_qvecs, stacked_dvecs = get_matching_descriptors(allres, qaids, aids) except Exception as ex: orgres.printme3() ut.printex(ex) raise if verbose: print('[rr2] * stacked_qvecs.shape = %r' % (stacked_qvecs.shape,)) print('[rr2] * stacked_dvecs.shape = %r' % (stacked_dvecs.shape,)) #distkey_list = ['L1', 'L2', 'hist_isect', 'emd'] #distkey_list = ['L1', 'L2', 'hist_isect'] #distkey_list = ['L2', 'hist_isect'] hist1 = np.asarray(stacked_qvecs, dtype=np.float32) hist2 = np.asarray(stacked_dvecs, dtype=np.float32) # returns an ordered dictionary distances1 = vt.compute_distances(hist1, hist2, distkey_list1) else: distances1 = {} # DO precomputed distances like fs (true weights) or lnbnn if len(other_xs) > 0: distances2 = ut.odict([(disttype, []) for disttype in distkey_list2]) for qaid, daid in zip(qaids, aids): try: qres = allres.qaid2_qres[qaid] for disttype in distkey_list2: if disttype == 'fs': # hack in full fs assert disttype == 'fs', 'unimplemented' vals = qres.aid2_fs[daid] else: assert disttype in qres.filtkey_list, 'no score labeled %' % (disttype,) index = qres.filtkey_list.index(disttype) vals = qres.aid2_fsv[daid].T[index] if len(vals) == 0: continue else: # individual score component pass #num_top_vec_scores = None num_top_vec_scores = ut.get_argval('--num-top-fs', type_=int, default=None) if num_top_vec_scores is not None: # Take only the best matching descriptor scores for each pair in this analysis # This tries to see how deperable the BEST descriptor score is for each match vals = vals[vals.argsort()[::-1][0:num_top_vec_scores]] vals = vals[vals.argsort()[::-1][0:num_top_vec_scores]] distances2[disttype].extend(vals) except KeyError: continue # convert to numpy array for disttype in distkey_list2: distances2[disttype] = np.array(distances2[disttype]) else: distances2 = {} # Put things back in expected order dist1_vals = ut.dict_take(distances1, distkey_list1) dist2_vals = ut.dict_take(distances2, distkey_list2) dist_vals = vt.rebuild_partition(dist1_vals, dist2_vals, desc_dist_xs, other_xs) distances = ut.odict(list(zip(distkey_list, dist_vals))) orgres2_descmatch_dists[orgtype] = distances return orgres2_descmatch_dists
def get_training_desc_dist(cm, qreq_, fsv_col_lbls=[], namemode=True, top_percent=None, data_annots=None, query_annots=None, num=None): r""" computes custom distances on prematched descriptors SeeAlso: python -m ibeis --tf learn_featscore_normalizer --show --disttype=ratio python -m ibeis --tf learn_featscore_normalizer --show --disttype=normdist -a timectrl -t default:K=1 --db PZ_Master1 --save pzmaster_normdist.png python -m ibeis --tf learn_featscore_normalizer --show --disttype=normdist -a timectrl -t default:K=1 --db PZ_MTEST --save pzmtest_normdist.png python -m ibeis --tf learn_featscore_normalizer --show --disttype=normdist -a timectrl -t default:K=1 --db GZ_ALL python -m ibeis --tf learn_featscore_normalizer --show --disttype=L2_sift -a timectrl -t default:K=1 --db PZ_MTEST python -m ibeis --tf learn_featscore_normalizer --show --disttype=L2_sift -a timectrl -t default:K=1 --db PZ_Master1 python -m ibeis --tf compare_featscores --show --disttype=L2_sift,normdist -a timectrl -t default:K=1 --db GZ_ALL CommandLine: python -m ibeis.algo.hots.scorenorm --exec-get_training_desc_dist python -m ibeis.algo.hots.scorenorm --exec-get_training_desc_dist:1 Example: >>> # ENABLE_DOCTEST >>> from ibeis.algo.hots.scorenorm import * # NOQA >>> import ibeis >>> cm, qreq_ = ibeis.testdata_cm(defaultdb='PZ_MTEST') >>> fsv_col_lbls = ['ratio', 'lnbnn', 'L2_sift'] >>> namemode = False >>> (tp_fsv, tn_fsv) = get_training_desc_dist(cm, qreq_, fsv_col_lbls, >>> namemode=namemode) >>> result = ut.repr2((tp_fsv.T, tn_fsv.T), nl=1) >>> print(result) Example1: >>> # ENABLE_DOCTEST >>> from ibeis.algo.hots.scorenorm import * # NOQA >>> import ibeis >>> cm, qreq_ = ibeis.testdata_cm(defaultdb='PZ_MTEST') >>> fsv_col_lbls = cm.fsv_col_lbls >>> num = None >>> namemode = False >>> top_percent = None >>> data_annots = None >>> (tp_fsv1, tn_fsv1) = get_training_fsv(cm, namemode=namemode, >>> top_percent=top_percent) >>> (tp_fsv, tn_fsv) = get_training_desc_dist(cm, qreq_, fsv_col_lbls, >>> namemode=namemode, >>> top_percent=top_percent) >>> vt.asserteq(tp_fsv1, tp_fsv) >>> vt.asserteq(tn_fsv1, tn_fsv) """ if namemode: tp_idxs, tn_idxs = get_topname_training_idxs(cm, num=num) else: tp_idxs, tn_idxs = get_topannot_training_idxs(cm, num=num) if top_percent is not None: cm_orig = cm cm_orig.assert_self(qreq_, verbose=False) # Keep only the top scoring half of the feature matches tophalf_indicies = [ ut.take_percentile(fs.argsort()[::-1], top_percent) for fs in cm.get_fsv_prod_list() ] cm = cm_orig.take_feature_matches(tophalf_indicies, keepscores=True) assert np.all(cm_orig.daid_list.take(tp_idxs) == cm.daid_list.take(tp_idxs)) assert np.all(cm_orig.daid_list.take(tn_idxs) == cm.daid_list.take(tn_idxs)) cm.assert_self(qreq_, verbose=False) ibs = qreq_.ibs query_config2_ = qreq_.extern_query_config2 data_config2_ = qreq_.extern_data_config2 special_xs, dist_xs = vt.index_partition(fsv_col_lbls, ['fg', 'ratio', 'lnbnn', 'normdist']) dist_lbls = ut.take(fsv_col_lbls, dist_xs) special_lbls = ut.take(fsv_col_lbls, special_xs) qaid = cm.qaid # cm.assert_self(qreq_=qreq_) fsv_list = [] for idxs in [tp_idxs, tn_idxs]: daid_list = cm.daid_list.take(idxs) # Matching indices in query / databas images qfxs_list = ut.take(cm.qfxs_list, idxs) dfxs_list = ut.take(cm.dfxs_list, idxs) need_norm = len(ut.setintersect_ordered(['ratio', 'lnbnn', 'normdist'], special_lbls)) > 0 #need_norm |= 'parzen' in special_lbls #need_norm |= 'norm_parzen' in special_lbls need_dists = len(dist_xs) > 0 if need_dists or need_norm: qaid_list = [qaid] * len(qfxs_list) qvecs_flat_m = np.vstack(ibs.get_annot_vecs_subset(qaid_list, qfxs_list, config2_=query_config2_)) dvecs_flat_m = np.vstack(ibs.get_annot_vecs_subset(daid_list, dfxs_list, config2_=data_config2_)) if need_norm: assert any(x is not None for x in cm.filtnorm_aids), 'no normalizer known' naids_list = ut.take(cm.naids_list, idxs) nfxs_list = ut.take(cm.nfxs_list, idxs) nvecs_flat = ibs.lookup_annot_vecs_subset(naids_list, nfxs_list, config2_=data_config2_, annots=data_annots) #import utool #with utool.embed_on_exception_context: #nvecs_flat_m = np.vstack(ut.compress(nvecs_flat, nvecs_flat)) _nvecs_flat_m = ut.compress(nvecs_flat, nvecs_flat) nvecs_flat_m = vt.safe_vstack(_nvecs_flat_m, qvecs_flat_m.shape, qvecs_flat_m.dtype) vdist = vt.L2_sift(qvecs_flat_m, dvecs_flat_m) ndist = vt.L2_sift(qvecs_flat_m, nvecs_flat_m) #assert np.all(vdist <= ndist) #import utool #utool.embed() #vdist = vt.L2_sift_sqrd(qvecs_flat_m, dvecs_flat_m) #ndist = vt.L2_sift_sqrd(qvecs_flat_m, nvecs_flat_m) #vdist = vt.L2_root_sift(qvecs_flat_m, dvecs_flat_m) #ndist = vt.L2_root_sift(qvecs_flat_m, nvecs_flat_m) #x = cm.fsv_list[0][0:5].T[0] #y = (ndist - vdist)[0:5] if len(special_xs) > 0: special_dist_list = [] # assert special_lbls[0] == 'fg' if 'fg' in special_lbls: # hack for fgweights (could get them directly from fsv) qfgweights_flat_m = np.hstack(ibs.get_annot_fgweights_subset([qaid] * len(qfxs_list), qfxs_list, config2_=query_config2_)) dfgweights_flat_m = np.hstack(ibs.get_annot_fgweights_subset(daid_list, dfxs_list, config2_=data_config2_)) fgweights = np.sqrt(qfgweights_flat_m * dfgweights_flat_m) special_dist_list.append(fgweights) if 'ratio' in special_lbls: # Integrating ratio test ratio_dist = (vdist / ndist) special_dist_list.append(ratio_dist) if 'lnbnn' in special_lbls: lnbnn_dist = ndist - vdist special_dist_list.append(lnbnn_dist) #if 'parzen' in special_lbls: # parzen = vt.gauss_parzen_est(vdist, sigma=.38) # special_dist_list.append(parzen) #if 'norm_parzen' in special_lbls: # parzen = vt.gauss_parzen_est(ndist, sigma=.38) # special_dist_list.append(parzen) if 'normdist' in special_lbls: special_dist_list.append(ndist) special_dists = np.vstack(special_dist_list).T else: special_dists = np.empty((0, 0)) if len(dist_xs) > 0: # Get descriptors # Compute descriptor distnaces _dists = vt.compute_distances(qvecs_flat_m, dvecs_flat_m, dist_lbls) dists = np.vstack(_dists.values()).T else: dists = np.empty((0, 0)) fsv = vt.rebuild_partition(special_dists.T, dists.T, special_xs, dist_xs) fsv = np.array(fsv).T fsv_list.append(fsv) tp_fsv, tn_fsv = fsv_list return tp_fsv, tn_fsv
def get_orgres_desc_match_dists(allres, orgtype_list=['false', 'true'], distkey_list=['L2'], verbose=True): r""" computes distances between matching descriptors of orgtypes in allres Args: allres (AllResults): AllResults object orgtype_list (list): of strings denoting the type of results to compare distkey_list (list): list of requested distance types Returns: dict: orgres2_descmatch_dists mapping from orgtype to dicts of distances (ndarrays) Notes: Just SIFT distance seems to have a very interesting property CommandLine: python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --distkeys=fs,lnbnn,bar_L2_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=fs,lnbnn,bar_L2_sift,cos_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --distkeys=fs,lnbnn,bar_L2_sift,cos_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=cos_sift --show python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_Master0 --distkeys=fs,lnbnn,bar_L2_sift,cos_sift --show --nosupport python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+siam128 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift --num-top-fs=2 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift --num-top-fs=10 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+sift --num-top-fs=1000 python -m ibeis.expt.results_analyzer --test-get_orgres_desc_match_dists --db PZ_MTEST --distkeys=lnbnn --show --feat_type=hesaff+siam128 --num-top-fs=1 Example: >>> # SLOW_DOCTEST >>> from ibeis.expt.results_analyzer import * # NOQA >>> from ibeis.expt import results_all >>> import ibeis >>> ibs = ibeis.opendb(defaultdb='PZ_MTEST') >>> qaid_list = ibs.get_valid_aids(hasgt=True) >>> from ibeis.model import Config >>> cfgdict = ut.argparse_dict(dict(Config.parse_config_items(Config.QueryConfig())), only_specified=True) >>> allres = results_all.get_allres(ibs, qaid_list, cfgdict=cfgdict) >>> # {'feat_type': 'hesaff+siam128'}) >>> orgtype_list = ['false', 'top_true'] >>> verbose = True >>> distkey_list = ut.get_argval('--distkeys', type_=list, default=['fs', 'lnbnn', 'bar_L2_sift']) >>> #distkey_list = ['hist_isect'] >>> #distkey_list = ['L2_sift', 'bar_L2_sift'] >>> # execute function >>> orgres2_descmatch_dists = get_orgres_desc_match_dists(allres, orgtype_list, distkey_list, verbose) >>> #print('orgres2_descmatch_dists = ' + ut.dict_str(orgres2_descmatch_dists, truncate=-1, precision=3)) >>> stats_ = {key: ut.dict_val_map(val, ut.get_stats) for key, val in orgres2_descmatch_dists.items()} >>> print('orgres2_descmatch_dists = ' + ut.dict_str(stats_, truncate=2, precision=3, nl=4)) >>> # ------ VISUALIZE ------------ >>> ut.quit_if_noshow() >>> import vtool as vt >>> # If viewing a large amount of data this might help on OverFlowError >>> #ut.embed() >>> # http://stackoverflow.com/questions/20330475/matplotlib-overflowerror-allocated-too-many-blocks >>> # http://matplotlib.org/1.3.1/users/customizing.html >>> limit_ = len(qaid_list) > 100 >>> if limit_ or True: >>> import matplotlib as mpl >>> mpl.rcParams['agg.path.chunksize'] = 100000 >>> # visualize the descriptor scores >>> for fnum, distkey in enumerate(distkey_list, start=1): >>> encoder = vt.ScoreNormalizer() >>> tn_scores, tp_scores = ut.get_list_column(ut.dict_take(orgres2_descmatch_dists, orgtype_list), distkey) >>> encoder.fit_partitioned(tp_scores, tn_scores, verbose=False) >>> figtitle = 'Descriptor Distance: %r. db=%r\norgtype_list=%r' % (distkey, ibs.get_dbname(), orgtype_list) >>> use_support = not ut.get_argflag('--nosupport') >>> encoder.visualize(figtitle=figtitle, use_stems=not limit_, fnum=fnum, with_normscore=use_support, with_scores=use_support) >>> ut.show_if_requested() """ import vtool as vt orgres2_descmatch_dists = {} desc_dist_xs, other_xs = vt.index_partition(distkey_list, vt.VALID_DISTS) distkey_list1 = ut.list_take(distkey_list, desc_dist_xs) distkey_list2 = ut.list_take(distkey_list, other_xs) for orgtype in orgtype_list: if verbose: print('[rr2] getting orgtype=%r distances between vecs' % orgtype) orgres = allres.get_orgtype(orgtype) qaids = orgres.qaids aids = orgres.aids # DO distance that need real computation if len(desc_dist_xs) > 0: try: stacked_qvecs, stacked_dvecs = get_matching_descriptors( allres, qaids, aids) except Exception as ex: orgres.printme3() ut.printex(ex) raise if verbose: print('[rr2] * stacked_qvecs.shape = %r' % (stacked_qvecs.shape, )) print('[rr2] * stacked_dvecs.shape = %r' % (stacked_dvecs.shape, )) #distkey_list = ['L1', 'L2', 'hist_isect', 'emd'] #distkey_list = ['L1', 'L2', 'hist_isect'] #distkey_list = ['L2', 'hist_isect'] hist1 = np.asarray(stacked_qvecs, dtype=np.float32) hist2 = np.asarray(stacked_dvecs, dtype=np.float32) # returns an ordered dictionary distances1 = vt.compute_distances(hist1, hist2, distkey_list1) else: distances1 = {} # DO precomputed distances like fs (true weights) or lnbnn if len(other_xs) > 0: distances2 = ut.odict([(disttype, []) for disttype in distkey_list2]) for qaid, daid in zip(qaids, aids): try: qres = allres.qaid2_qres[qaid] for disttype in distkey_list2: if disttype == 'fs': # hack in full fs assert disttype == 'fs', 'unimplemented' vals = qres.aid2_fs[daid] else: assert disttype in qres.filtkey_list, 'no score labeled %' % ( disttype, ) index = qres.filtkey_list.index(disttype) vals = qres.aid2_fsv[daid].T[index] if len(vals) == 0: continue else: # individual score component pass #num_top_vec_scores = None num_top_vec_scores = ut.get_argval('--num-top-fs', type_=int, default=None) if num_top_vec_scores is not None: # Take only the best matching descriptor scores for each pair in this analysis # This tries to see how deperable the BEST descriptor score is for each match vals = vals[vals.argsort()[::-1] [0:num_top_vec_scores]] vals = vals[vals.argsort()[::-1] [0:num_top_vec_scores]] distances2[disttype].extend(vals) except KeyError: continue # convert to numpy array for disttype in distkey_list2: distances2[disttype] = np.array(distances2[disttype]) else: distances2 = {} # Put things back in expected order dist1_vals = ut.dict_take(distances1, distkey_list1) dist2_vals = ut.dict_take(distances2, distkey_list2) dist_vals = vt.rebuild_partition(dist1_vals, dist2_vals, desc_dist_xs, other_xs) distances = ut.odict(list(zip(distkey_list, dist_vals))) orgres2_descmatch_dists[orgtype] = distances return orgres2_descmatch_dists