コード例 #1
0
def lapse_rate(Dir,temperature_map, DEMmap):    
    """
    This function downscales the GLDAS temperature map by using the DEM map
  				
    Keyword arguments:
    temperature_map -- 'C:/' path to the temperature map
    DEMmap -- 'C:/' path to the DEM map
    """
				
    # calculate average altitudes corresponding to T resolution
    dest = RC.reproject_dataset_example(DEMmap, temperature_map,method = 4)				
    DEM_ave_out_name = os.path.join(Dir,'HydroSHED', 'DEM','DEM_ave.tif')
    geo_out, proj, size_X, size_Y = RC.Open_array_info(temperature_map)				
    DEM_ave_data = dest.GetRasterBand(1).ReadAsArray()
    DC.Save_as_tiff(DEM_ave_out_name, DEM_ave_data, geo_out, proj)
    dest = None
   
    # determine lapse-rate [degress Celcius per meter]
    lapse_rate_number = 0.0065
    
    # open maps as numpy arrays
    dest = RC.reproject_dataset_example(DEM_ave_out_name, DEMmap, method = 2)			
    dem_avg=dest.GetRasterBand(1).ReadAsArray()
    dem_avg[dem_avg<0]=0
    dest = None

    # Open the temperature dataset
    dest = RC.reproject_dataset_example(temperature_map, DEMmap, method = 2)	
    T=dest.GetRasterBand(1).ReadAsArray()
    dest = None
    
    # Open Demmap
    demmap = RC.Open_tiff_array(DEMmap)
    dem_avg[demmap<=0]=0
    demmap[demmap==-32768]=np.nan
    
    # calculate first part
    T = T + ((dem_avg-demmap) * lapse_rate_number)
    
    return T
コード例 #2
0
def adjust_P(Dir, pressure_map, DEMmap):
    """
    This function downscales the GLDAS air pressure map by using the DEM map
  				
    Keyword arguments:
    pressure_map -- 'C:/' path to the pressure map
    DEMmap -- 'C:/' path to the DEM map
    """	

    # calculate average latitudes
    destDEMave = RC.reproject_dataset_example(DEMmap, pressure_map, method = 4)				
    DEM_ave_out_name = os.path.join(Dir, 'HydroSHED', 'DEM','DEM_ave.tif')
    geo_out, proj, size_X, size_Y = RC.Open_array_info(pressure_map)				
    DEM_ave_data = destDEMave.GetRasterBand(1).ReadAsArray()
    DC.Save_as_tiff(DEM_ave_out_name, DEM_ave_data, geo_out, proj)    

    # open maps as numpy arrays
    dest = RC.reproject_dataset_example(DEM_ave_out_name, DEMmap, method = 2)
    dem_avg=dest.GetRasterBand(1).ReadAsArray()
    dest = None
    
    # open maps as numpy arrays
    dest = RC.reproject_dataset_example(pressure_map, DEMmap, method = 2)
    P=dest.GetRasterBand(1).ReadAsArray()
    dest = None
    
    demmap = RC.Open_tiff_array(DEMmap)
    dem_avg[demmap<=0]=0
    demmap[demmap==-32768]=np.nan
    
    # calculate second part
    P = P + (101.3*((293-0.0065*(demmap-dem_avg))/293)**5.26 - 101.3)

    os.remove(DEM_ave_out_name)

    return P
コード例 #3
0
ファイル: Read_WaterPIX.py プロジェクト: wateraccounting/wa
def Get_Array(nc_filename_waterpix, Var_name, Example_dataset, Startdate, Enddate):
    
    #import general modules
    import numpy as np
    import pandas as pd
    from netCDF4 import Dataset    
    import gdal
    import osr
    
    #import WA+ modules    
    import wa.General.raster_conversions as RC
    
    '''
    #input files
    Name_NC_Runoff_CR = r'F:\\Create_Sheets\\Litani\\Simulations\\Simulation_1\\Sheet_5\\Runoff_CR_Simulation1_monthly_mm_012010_122010.nc'
    Example_dataset = r"F:\Create_Sheets\Litani\HydroSHED\DIR\DIR_HydroShed_-_15s.tif"
    NC_filename = "F:\Create_Sheets\Litani\WaterPIX\Litani.nc"
    Startdate = "2010-01-01"
    Enddate = "2010-12-31"
    Var = 'SurfaceRunoff_M'
    '''
    
    # Define Dates
    Dates = pd.date_range(Startdate, Enddate, freq = "MS")
    
    # Define end and start date
    Start = '%d%02d' %(Dates[0].year,Dates[0].month)
    End = '%d%02d' %(Dates[-1].year,Dates[-1].month)
    
    # Open netcdf of WaterPIX
    fh = Dataset(nc_filename_waterpix, 'r')

    # Get time series of WaterPIX
    time = fh.variables['time_yyyymm'][:]

    # Define time steps that are needed from WaterPIX    
    time_yes = np.zeros(len(time))
    time_yes[np.logical_and(np.int_(time) >= int(Start), np.int_(time) <= int(End))] = 1           
    time_start = time_yes[1:] - time_yes[:-1]     
    time_end = time_yes[:-1] - time_yes[1:]   

    # Set the startpoint    
    if np.sum(time_start)>0:
        Start_time = np.argwhere(time_start==1)[0][0] + 1
    else:
        Start_time = 0   

    # Set the endpoint            
    if np.sum(time_end)>0:                        
        End_time = np.argwhere(time_end==1)[0][0] + 1
    else:
        End_time = len(Dates) + Start_time   

    # Get the wanted variable from WaterPIX                              
    data = fh.variables[Var_name][Start_time:End_time,:,:]
    
    # Fill the WaterPIX veriable
    data_filled = np.dstack(np.ma.filled(data,np.nan))
    
    # Get WaterPIX projection
    proj = fh.variables['crs'].crs_wkt
    lon = fh.variables['longitude'][:]
    lat = fh.variables['latitude'][:]
 
    # Find WaterPIX raster parameters
    col = int(len(lon))
    row = int(len(lat))
    y_diff = (lat[0] - lat[-1])/(row - 1)
    x_diff = (lon[0] - lon[-1])/(col - 1)   
    geo = tuple([lon[0]+0.5*x_diff, -x_diff, 0.0, lat[0]+0.5*y_diff, 0.0, -y_diff])

    # Find example raster parameters
    geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset)
    
    # Create empty raster file
    Array_End = np.zeros([int(data_filled.shape[2]), size_Y, size_X])
    
    # Loop over time and add one time period at the time to end array
    for i in range(1,int(data_filled.shape[2])):
        
        # Create Memory file containing WaterPIX data
        mem_drv = gdal.GetDriverByName('MEM')
        dest = mem_drv.Create('', int(data_filled.shape[1]), int(data_filled.shape[0]), int(data_filled.shape[2]),
                               gdal.GDT_Float32, ['COMPRESS=LZW'])
        
        dest.SetGeoTransform(geo)
        srse = osr.SpatialReference()
        srse.SetWellKnownGeogCS("WGS84")
        dest.SetProjection(srse.ExportToWkt())
        dest.GetRasterBand(1).WriteArray(data_filled[:,:,i-1])
        dest.GetRasterBand(1).SetNoDataValue(-9999)
        
        # reproject the WaterPIX raster to the example raster
        dest_out = RC.reproject_dataset_example(dest, Example_dataset)
        
        # Write the raster array to the end raster
        Array_End[i-1,:,:] = dest_out.GetRasterBand(1).ReadAsArray()
 
    # Set nan value to 0
    Array_End[np.isnan(Array_End)] = 0
     
    return(Array_End)          

       
    
    
    
    
    
    
コード例 #4
0
ファイル: main.py プロジェクト: jupaladin/wa
def Calculate(Basin, P_Product, ET_Product, Inflow_Text_Files,
              Reservoirs_Lakes_Calculations, Startdate, Enddate, Simulation):
    '''
    This functions consists of the following sections:
    1. Set General Parameters
    2. Download Data
    3. Convert the RAW data to NETCDF files
    4. Create Mask based on LU map
    5. Calculate Runoff based on Budyko
    6. Add inflow in Runoff
    7. Calculate River flow
       7.1  Route Runoff
       7.2  Add Reservoirs
       7.3  Add surface water withdrawals
    '''
    # import General modules
    import os
    import gdal
    import numpy as np
    import pandas as pd
    import copy

    # import WA plus modules
    from wa.General import raster_conversions as RC
    from wa.General import data_conversions as DC
    import wa.Functions.Five as Five
    import wa.Functions.Start as Start

    ######################### 1. Set General Parameters ##############################

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    if not os.path.exists(Dir_Basin):
        os.makedirs(Dir_Basin)

    # Get the boundaries of the basin based on the shapefile of the watershed
    # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin)
    Boundaries, LU_dataset = Start.Boundaries.Determine_LU_Based(Basin)
    LU_data = RC.Open_tiff_array(LU_dataset)
    geo_out_LU, proj_LU, size_X_LU, size_Y_LU = RC.Open_array_info(LU_dataset)

    # Define resolution of SRTM
    Resolution = '15s'

    # Get the amount of months
    Amount_months = len(pd.date_range(Startdate, Enddate, freq='MS'))
    Amount_months_reservoirs = Amount_months + 1

    # Startdate for moving window Budyko
    Startdate_2months_Timestamp = pd.Timestamp(Startdate) - pd.DateOffset(
        months=2)
    Startdate_2months = Startdate_2months_Timestamp.strftime('%Y-%m-%d')

    ############################# 2. Download Data ###################################

    # Download data
    Data_Path_P = Start.Download_Data.Precipitation(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate, P_Product)
    Data_Path_ET = Start.Download_Data.Evapotranspiration(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate, ET_Product)
    Data_Path_DEM = Start.Download_Data.DEM(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    if Resolution is not '3s':
        Data_Path_DEM = Start.Download_Data.DEM(
            Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
            [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    Data_Path_DEM_Dir = Start.Download_Data.DEM_Dir(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Resolution)
    Data_Path_ETref = Start.Download_Data.ETreference(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate_2months,
        Enddate)
    Data_Path_JRC_occurrence = Start.Download_Data.JRC_occurrence(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']])
    Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly')

    ###################### 3. Convert the RAW data to NETCDF files ##############################
    # The sequence of converting the data is:
    # DEM
    # DEM flow directions
    # Precipitation
    # Evapotranspiration
    # Reference Evapotranspiration

    #_____________________________________DEM__________________________________
    # Get the data of DEM and save as nc, This dataset is also used as reference for others
    Example_dataset = os.path.join(Dir_Basin, Data_Path_DEM,
                                   'DEM_HydroShed_m_%s.tif' % Resolution)
    DEMdest = gdal.Open(Example_dataset)
    Xsize_CR = int(DEMdest.RasterXSize)
    Ysize_CR = int(DEMdest.RasterYSize)
    DataCube_DEM_CR = DEMdest.GetRasterBand(1).ReadAsArray()

    Name_NC_DEM_CR = DC.Create_NC_name('DEM_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM_CR):
        DC.Save_as_NC(Name_NC_DEM_CR, DataCube_DEM_CR, 'DEM_CR',
                      Example_dataset)
    DEMdest = None

    #___________________________________DEM Dir________________________________
    # Get the data of flow direction and save as nc.
    Dir_dataset = os.path.join(Dir_Basin, Data_Path_DEM_Dir,
                               'DIR_HydroShed_-_%s.tif' % Resolution)
    DEMDirdest = gdal.Open(Dir_dataset)
    DataCube_DEM_Dir_CR = DEMDirdest.GetRasterBand(1).ReadAsArray()

    Name_NC_DEM_Dir_CR = DC.Create_NC_name('DEM_Dir_CR', Simulation, Dir_Basin,
                                           5)
    if not os.path.exists(Name_NC_DEM_Dir_CR):
        DC.Save_as_NC(Name_NC_DEM_Dir_CR, DataCube_DEM_Dir_CR, 'DEM_Dir_CR',
                      Example_dataset)
    DEMDirdest = None
    del DataCube_DEM_Dir_CR

    #______________________________ Precipitation______________________________
    # Define info for the nc files
    info = [
        'monthly', 'mm',
        ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    # Precipitation data
    Name_NC_Prec_CR = DC.Create_NC_name('Prec_CR', Simulation, Dir_Basin, 5,
                                        info)
    if not os.path.exists(Name_NC_Prec_CR):

        # Get the data of Precipitation and save as nc
        DataCube_Prec_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_P_Monthly,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_Prec_CR, DataCube_Prec_CR, 'Prec_CR',
                      Example_dataset, Startdate_2months, Enddate, 'monthly',
                      0.01)
        del DataCube_Prec_CR

    #____________________________ Evapotranspiration___________________________
    # Evapotranspiration data
    info = [
        'monthly', 'mm',
        ''.join([Startdate_2months[5:7], Startdate_2months[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_ET_CR = DC.Create_NC_name('ET_CR', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_ET_CR):

        # Get the data of Evaporation and save as nc
        DataCube_ET_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ET,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ET_CR, DataCube_ET_CR, 'ET_CR', Example_dataset,
                      Startdate_2months, Enddate, 'monthly', 0.01)
        del DataCube_ET_CR

    #_______________________Reference Evapotranspiration_______________________
    # Reference Evapotranspiration data
    Name_NC_ETref_CR = DC.Create_NC_name('ETref_CR', Simulation, Dir_Basin, 5,
                                         info)
    if not os.path.exists(Name_NC_ETref_CR):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ETref_CR = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ETref,
            Startdate_2months,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ETref_CR, DataCube_ETref_CR, 'ETref_CR',
                      Example_dataset, Startdate_2months, Enddate, 'monthly',
                      0.01)
        del DataCube_ETref_CR

    #_______________________fraction surface water _______________________

    Name_NC_frac_sw_CR = DC.Create_NC_name('Fraction_SW_CR', Simulation,
                                           Dir_Basin, 5)
    if not os.path.exists(Name_NC_frac_sw_CR):
        DataCube_frac_sw = np.ones_like(LU_data) * np.nan

        import wa.Functions.Start.Get_Dictionaries as GD

        # Get dictionaries and keys
        lulc = GD.get_sheet5_classes()
        lulc_dict = GD.get_sheet5_classes().keys()
        consumed_frac_dict = GD.sw_supply_fractions_sheet5()

        for key in lulc_dict:
            Numbers = lulc[key]
            for LU_nmbr in Numbers:
                Mask = np.zeros_like(LU_data)
                Mask[LU_data == LU_nmbr] = 1
                DataCube_frac_sw[Mask == 1] = consumed_frac_dict[key]

        dest_frac_sw = DC.Save_as_MEM(DataCube_frac_sw, geo_out_LU, proj_LU)
        dest_frac_sw_CR = RC.reproject_dataset_example(dest_frac_sw,
                                                       Example_dataset)
        DataCube_frac_sw_CR = dest_frac_sw_CR.ReadAsArray()
        DataCube_frac_sw_CR[DataCube_frac_sw_CR == 0] = np.nan

        DC.Save_as_NC(Name_NC_frac_sw_CR,
                      DataCube_frac_sw_CR,
                      'Fraction_SW_CR',
                      Example_dataset,
                      Scaling_factor=0.01)
        del DataCube_frac_sw_CR

    del DataCube_DEM_CR
    ##################### 4. Create Mask based on LU map ###########################

    # Now a mask will be created to define the area of interest (pixels where there is a landuse defined)

    #_____________________________________LU___________________________________
    destLU = RC.reproject_dataset_example(LU_dataset,
                                          Example_dataset,
                                          method=1)
    DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()

    Raster_Basin_CR = np.zeros([Ysize_CR, Xsize_CR])
    Raster_Basin_CR[DataCube_LU_CR > 0] = 1
    Name_NC_Basin_CR = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Basin_CR):
        DC.Save_as_NC(Name_NC_Basin_CR, Raster_Basin_CR, 'Basin_CR',
                      Example_dataset)
        #del Raster_Basin
    '''
    Name_NC_Basin = DC.Create_NC_name('Basin_CR', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Basin):

        Raster_Basin = RC.Vector_to_Raster(Dir_Basin, Shape_file_name_shp, Example_dataset)
        Raster_Basin = np.clip(Raster_Basin, 0, 1)
        DC.Save_as_NC(Name_NC_Basin, Raster_Basin, 'Basin_CR', Example_dataset)
        #del Raster_Basin
    '''
    ###################### 5. Calculate Runoff based on Budyko ###########################

    # Define info for the nc files
    info = [
        'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    # Define the output names of section 5 and 6
    Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin,
                                          5, info)
    Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_CR

    if not os.path.exists(Name_NC_Runoff_CR):

        # Calculate runoff based on Budyko
        DataCube_Runoff_CR = Five.Budyko.Calc_runoff(Name_NC_ETref_CR,
                                                     Name_NC_Prec_CR)

        # Save the runoff as netcdf
        DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Runoff_CR
    '''  
    ###################### Calculate Runoff with P min ET ###########################
  
    Name_NC_Runoff_CR = DC.Create_NC_name('Runoff_CR', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_Runoff_CR):

        ET = RC.Open_nc_array(Name_NC_ET_CR)
        P = RC.Open_nc_array(Name_NC_Prec_CR) 
        DataCube_Runoff_CR = P - ET
        DataCube_Runoff_CR[:,:,:][DataCube_Runoff_CR<=0.1] = 0
        DataCube_Runoff_CR[:,:,:][np.isnan(DataCube_Runoff_CR)] = 0                          
        DC.Save_as_NC(Name_NC_Runoff_CR, DataCube_Runoff_CR, 'Runoff_CR', Example_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Runoff_CR

     '''
    ############### 6. Add inflow in basin by using textfile #########################

    # add inlets if there are textfiles defined
    if len(Inflow_Text_Files) > 0:

        # Create name of the Runoff with inlets
        Name_NC_Runoff_with_Inlets_CR = DC.Create_NC_name(
            'Runoff_with_Inlets_CR', Simulation, Dir_Basin, 5, info)

        # Use this runoff name for the routing (it will overwrite the runoff without inlets)
        Name_NC_Runoff_for_Routing_CR = Name_NC_Runoff_with_Inlets_CR

        # Create the file if it not exists
        if not os.path.exists(Name_NC_Runoff_with_Inlets_CR):

            # Calculate the runoff that will be routed by including the inlets
            DataCube_Runoff_with_Inlets_CR = Five.Inlets.Add_Inlets(
                Name_NC_Runoff_CR, Inflow_Text_Files)

            # Save this runoff as netcdf
            DC.Save_as_NC(Name_NC_Runoff_with_Inlets_CR,
                          DataCube_Runoff_with_Inlets_CR,
                          'Runoff_with_Inlets_CR', Example_dataset, Startdate,
                          Enddate, 'monthly', 0.01)
            del DataCube_Runoff_with_Inlets_CR

    ######################### 7. Now the surface water is calculated #################

    # Names for dicionaries and nc files
    # CR1 = Natural_flow with only green water
    # CR2 = Natural_flow with only green water and reservoirs
    # CR3 = Flow with green, blue and reservoirs

    ######################### 7.1 Apply Channel Routing ###############################

    # Create the name for the netcdf outputs for section 7.1
    info = [
        'monthly', 'pixels', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_Acc_Pixels_CR = DC.Create_NC_name('Acc_Pixels_CR', Simulation,
                                              Dir_Basin, 5)
    info = [
        'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_NC_Discharge_CR1 = DC.Create_NC_name('Discharge_CR1', Simulation,
                                              Dir_Basin, 5, info)

    # If one of the outputs does not exists, run this part
    if not (os.path.exists(Name_NC_Acc_Pixels_CR)
            and os.path.exists(Name_NC_Discharge_CR1)):

        Accumulated_Pixels_CR, Discharge_CR1 = Five.Channel_Routing.Channel_Routing(
            Name_NC_DEM_Dir_CR,
            Name_NC_Runoff_for_Routing_CR,
            Name_NC_Basin_CR,
            Example_dataset,
            Degrees=1)

        # Save Results
        DC.Save_as_NC(Name_NC_Acc_Pixels_CR, Accumulated_Pixels_CR,
                      'Acc_Pixels_CR', Example_dataset)
        DC.Save_as_NC(Name_NC_Discharge_CR1, Discharge_CR1, 'Discharge_CR1',
                      Example_dataset, Startdate, Enddate, 'monthly')

    ################# Calculate the natural river and river zones #################

    Name_NC_Rivers_CR = DC.Create_NC_name('Rivers_CR', Simulation, Dir_Basin,
                                          5, info)
    if not os.path.exists(Name_NC_Rivers_CR):

        # Open routed discharge array
        Discharge_CR1 = RC.Open_nc_array(Name_NC_Discharge_CR1)
        Raster_Basin = RC.Open_nc_array(Name_NC_Basin_CR)

        # Calculate mean average over the period
        if len(np.shape(Discharge_CR1)) > 2:
            Routed_Discharge_Ave = np.nanmean(Discharge_CR1, axis=0)
        else:
            Routed_Discharge_Ave = Discharge_CR1

        # Define the 2% highest pixels as rivers
        Rivers = np.zeros([
            np.size(Routed_Discharge_Ave, 0),
            np.size(Routed_Discharge_Ave, 1)
        ])
        Routed_Discharge_Ave[Raster_Basin != 1] = np.nan
        Routed_Discharge_Ave_number = np.nanpercentile(Routed_Discharge_Ave,
                                                       98)
        Rivers[
            Routed_Discharge_Ave >
            Routed_Discharge_Ave_number] = 1  # if yearly average is larger than 5000km3/month that it is a river

        # Save the river file as netcdf file
        DC.Save_as_NC(Name_NC_Rivers_CR, Rivers, 'Rivers_CR', Example_dataset)

    ########################## Create river directories ###########################

    Name_py_River_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'River_dict_CR1_simulation%d.npy' % (Simulation))
    Name_py_DEM_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'DEM_dict_CR1_simulation%d.npy' % (Simulation))
    Name_py_Distance_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Distance_dict_CR1_simulation%d.npy' % (Simulation))

    if not (os.path.exists(Name_py_River_dict_CR1)
            and os.path.exists(Name_py_DEM_dict_CR1)
            and os.path.exists(Name_py_Distance_dict_CR1)):

        # Get river and DEM dict
        River_dict_CR1, DEM_dict_CR1, Distance_dict_CR1 = Five.Create_Dict.Rivers_General(
            Name_NC_DEM_CR, Name_NC_DEM_Dir_CR, Name_NC_Acc_Pixels_CR,
            Name_NC_Rivers_CR, Example_dataset)
        np.save(Name_py_River_dict_CR1, River_dict_CR1)
        np.save(Name_py_DEM_dict_CR1, DEM_dict_CR1)
        np.save(Name_py_Distance_dict_CR1, Distance_dict_CR1)
    else:
        # Load
        River_dict_CR1 = np.load(Name_py_River_dict_CR1).item()
        DEM_dict_CR1 = np.load(Name_py_DEM_dict_CR1).item()
        Distance_dict_CR1 = np.load(Name_py_Distance_dict_CR1).item()

    Name_py_Discharge_dict_CR1 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR1_simulation%d.npy' % (Simulation))

    if not os.path.exists(Name_py_Discharge_dict_CR1):
        # Get discharge dict
        Discharge_dict_CR1 = Five.Create_Dict.Discharge(
            Name_NC_Discharge_CR1, River_dict_CR1, Amount_months,
            Example_dataset)
        np.save(Name_py_Discharge_dict_CR1, Discharge_dict_CR1)
    else:
        # Load
        Discharge_dict_CR1 = np.load(Name_py_Discharge_dict_CR1).item()

    ###################### 7.2 Calculate surface water storage characteristics ######################

    Name_py_Discharge_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_River_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'River_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_DEM_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'DEM_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_Distance_dict_CR2 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Distance_dict_CR2_simulation%d.npy' % (Simulation))
    Name_py_Diff_Water_Volume = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Diff_Water_Volume_CR2_simulation%d.npy' % (Simulation))
    Name_py_Regions = os.path.join(Dir_Basin, 'Simulations',
                                   'Simulation_%d' % Simulation, 'Sheet_5',
                                   'Regions_simulation%d.npy' % (Simulation))

    if not (os.path.exists(Name_py_Discharge_dict_CR2)
            and os.path.exists(Name_py_River_dict_CR2)
            and os.path.exists(Name_py_DEM_dict_CR2)
            and os.path.exists(Name_py_Distance_dict_CR2)):

        # Copy dicts as starting adding reservoir
        Discharge_dict_CR2 = copy.deepcopy(Discharge_dict_CR1)
        River_dict_CR2 = copy.deepcopy(River_dict_CR1)
        DEM_dict_CR2 = copy.deepcopy(DEM_dict_CR1)
        Distance_dict_CR2 = copy.deepcopy(Distance_dict_CR1)

        if Reservoirs_Lakes_Calculations == 1:

            # define input tiffs for surface water calculations
            input_JRC = os.path.join(Dir_Basin, Data_Path_JRC_occurrence,
                                     'JRC_Occurrence_percent.tif')
            DEM_dataset = os.path.join(Dir_Basin, Data_Path_DEM,
                                       'DEM_HydroShed_m_3s.tif')

            sensitivity = 700  # 900 is less sensitive 1 is very sensitive
            Regions = Five.Reservoirs.Calc_Regions(Name_NC_Basin_CR, input_JRC,
                                                   sensitivity, Boundaries)

            Diff_Water_Volume = np.zeros(
                [len(Regions), Amount_months_reservoirs - 1, 3])
            reservoir = 0

            for region in Regions:

                popt = Five.Reservoirs.Find_Area_Volume_Relation(
                    region, input_JRC, DEM_dataset)

                Area_Reservoir_Values = Five.Reservoirs.GEE_calc_reservoir_area(
                    region, Startdate, Enddate)

                Diff_Water_Volume[
                    reservoir, :, :] = Five.Reservoirs.Calc_Diff_Storage(
                        Area_Reservoir_Values, popt)
                reservoir += 1

            ################# 7.3 Add storage reservoirs and change outflows ##################
            Discharge_dict_CR2, River_dict_CR2, DEM_dict_CR2, Distance_dict_CR2 = Five.Reservoirs.Add_Reservoirs(
                Name_NC_Rivers_CR, Name_NC_Acc_Pixels_CR, Diff_Water_Volume,
                River_dict_CR2, Discharge_dict_CR2, DEM_dict_CR2,
                Distance_dict_CR2, Regions, Example_dataset)

            np.save(Name_py_Regions, Regions)
            np.save(Name_py_Diff_Water_Volume, Diff_Water_Volume)

        np.save(Name_py_Discharge_dict_CR2, Discharge_dict_CR2)
        np.save(Name_py_River_dict_CR2, River_dict_CR2)
        np.save(Name_py_DEM_dict_CR2, DEM_dict_CR2)
        np.save(Name_py_Distance_dict_CR2, Distance_dict_CR2)

    else:
        # Load
        Discharge_dict_CR2 = np.load(Name_py_Discharge_dict_CR2).item()
        River_dict_CR2 = np.load(Name_py_River_dict_CR2).item()
        DEM_dict_CR2 = np.load(Name_py_DEM_dict_CR2).item()
        Distance_dict_CR2 = np.load(Name_py_Distance_dict_CR2).item()

    ####################### 7.3 Add surface water withdrawals #############################

    Name_py_Discharge_dict_CR3 = os.path.join(
        Dir_Basin, 'Simulations', 'Simulation_%d' % Simulation, 'Sheet_5',
        'Discharge_dict_CR3_simulation%d.npy' % (Simulation))

    if not os.path.exists(Name_py_Discharge_dict_CR3):

        Discharge_dict_CR3, DataCube_ETblue_m3 = Five.Irrigation.Add_irrigation(
            Discharge_dict_CR2, River_dict_CR2, Name_NC_Rivers_CR,
            Name_NC_ET_CR, Name_NC_ETref_CR, Name_NC_Prec_CR, Name_NC_Basin_CR,
            Name_NC_frac_sw_CR, Startdate, Enddate, Example_dataset)
        np.save(Name_py_Discharge_dict_CR3, Discharge_dict_CR3)

        # save ETblue as nc
        info = [
            'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
            ''.join([Enddate[5:7], Enddate[0:4]])
        ]
        Name_NC_ETblue = DC.Create_NC_name('ETblue', Simulation, Dir_Basin, 5,
                                           info)
        DC.Save_as_NC(Name_NC_ETblue, DataCube_ETblue_m3, 'ETblue',
                      Example_dataset, Startdate, Enddate, 'monthly')

    else:
        Discharge_dict_CR3 = np.load(Name_py_Discharge_dict_CR3).item()

    ################################# Plot graph ##################################

    # Draw graph
    Five.Channel_Routing.Graph_DEM_Distance_Discharge(
        Discharge_dict_CR3, Distance_dict_CR2, DEM_dict_CR2, River_dict_CR2,
        Startdate, Enddate, Example_dataset)

    ######################## Change data to fit the LU data #######################

    # Discharge
    # Define info for the nc files
    info = [
        'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Discharge = DC.Create_NC_name('Discharge', Simulation, Dir_Basin,
                                          5, info)
    if not os.path.exists(Name_NC_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Discharge_CR = DC.Convert_dict_to_array(
            River_dict_CR2, Discharge_dict_CR3, Example_dataset)
        DC.Save_as_NC(Name_NC_Discharge, DataCube_Discharge_CR, 'Discharge',
                      Example_dataset, Startdate, Enddate, 'monthly')
        del DataCube_Discharge_CR

    # DEM
    Name_NC_DEM = DC.Create_NC_name('DEM', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_CR = RC.Open_nc_array(Name_NC_DEM_CR)
        DataCube_DEM = RC.resize_array_example(DataCube_DEM_CR,
                                               LU_data,
                                               method=1)
        DC.Save_as_NC(Name_NC_DEM, DataCube_DEM, 'DEM', LU_dataset)
        del DataCube_DEM

    # flow direction
    Name_NC_DEM_Dir = DC.Create_NC_name('DEM_Dir', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_DEM_Dir):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_DEM_Dir_CR = RC.Open_nc_array(Name_NC_DEM_Dir_CR)
        DataCube_DEM_Dir = RC.resize_array_example(DataCube_DEM_Dir_CR,
                                                   LU_data,
                                                   method=1)
        DC.Save_as_NC(Name_NC_DEM_Dir, DataCube_DEM_Dir, 'DEM_Dir', LU_dataset)
        del DataCube_DEM_Dir

    # Precipitation
    # Define info for the nc files
    info = [
        'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Prec = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_Prec):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_Prec = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_P_Monthly, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_Prec, DataCube_Prec, 'Prec', LU_dataset,
                      Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Prec

    # Evapotranspiration
    Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 5)
    if not os.path.exists(Name_NC_ET):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ET = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_ET, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', LU_dataset, Startdate,
                      Enddate, 'monthly', 0.01)
        del DataCube_ET

    # Reference Evapotranspiration data
    Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 5, info)
    if not os.path.exists(Name_NC_ETref):

        # Get the data of Reference Evapotranspiration and save as nc
        DataCube_ETref = RC.Get3Darray_time_series_monthly(
            Dir_Basin, Data_Path_ETref, Startdate, Enddate, LU_dataset)
        DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', LU_dataset,
                      Startdate, Enddate, 'monthly', 0.01)
        del DataCube_ETref

    # Rivers
    Name_NC_Rivers = DC.Create_NC_name('Rivers', Simulation, Dir_Basin, 5,
                                       info)
    if not os.path.exists(Name_NC_Rivers):

        # Get the data of Reference Evapotranspiration and save as nc
        Rivers_CR = RC.Open_nc_array(Name_NC_Rivers_CR)
        DataCube_Rivers = RC.resize_array_example(Rivers_CR, LU_data)
        DC.Save_as_NC(Name_NC_Rivers, DataCube_Rivers, 'Rivers', LU_dataset)
        del DataCube_Rivers, Rivers_CR

    # Discharge
    # Define info for the nc files
    info = [
        'monthly', 'm3', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    Name_NC_Routed_Discharge = DC.Create_NC_name('Routed_Discharge',
                                                 Simulation, Dir_Basin, 5,
                                                 info)
    if not os.path.exists(Name_NC_Routed_Discharge):

        # Get the data of Reference Evapotranspiration and save as nc
        Routed_Discharge_CR = RC.Open_nc_array(Name_NC_Discharge)
        DataCube_Routed_Discharge = RC.resize_array_example(
            Routed_Discharge_CR, LU_data)
        DC.Save_as_NC(Name_NC_Routed_Discharge, DataCube_Routed_Discharge,
                      'Routed_Discharge', LU_dataset, Startdate, Enddate,
                      'monthly')
        del DataCube_Routed_Discharge, Routed_Discharge_CR

    # Get raster information
    geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset)

    Rivers = RC.Open_nc_array(Name_NC_Rivers_CR)

    # Create ID Matrix
    y, x = np.indices((size_Y, size_X))
    ID_Matrix = np.int32(
        np.ravel_multi_index(np.vstack((y.ravel(), x.ravel())),
                             (size_Y, size_X),
                             mode='clip').reshape(x.shape)) + 1

    # Get tiff array time dimension:
    time_dimension = int(np.shape(Discharge_dict_CR3[0])[0])

    # create an empty array
    Result = np.zeros([time_dimension, size_Y, size_X])

    for river_part in range(0, len(River_dict_CR2)):
        for river_pixel in range(1, len(River_dict_CR2[river_part])):
            river_pixel_ID = River_dict_CR2[river_part][river_pixel]
            if len(np.argwhere(ID_Matrix == river_pixel_ID)) > 0:
                row, col = np.argwhere(ID_Matrix == river_pixel_ID)[0][:]
                Result[:, row,
                       col] = Discharge_dict_CR3[river_part][:, river_pixel]
        print(river_part)

    Outflow = Discharge_dict_CR3[0][:, 1]

    for i in range(0, time_dimension):
        output_name = r'C:/testmap/rtest_%s.tif' % i
        Result_one = Result[i, :, :]
        DC.Save_as_tiff(output_name, Result_one, geo_out, "WGS84")

    import os

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    info = [
        'monthly', 'm3-month-1', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]
    Name_Result = DC.Create_NC_name('DischargeEnd', Simulation, Dir_Basin, 5,
                                    info)
    Result[np.logical_and(Result == 0.0, Rivers == 0.0)] = np.nan

    DC.Save_as_NC(Name_Result, Result, 'DischargeEnd', Example_dataset,
                  Startdate, Enddate, 'monthly')

    return ()
コード例 #5
0
def CollectLANDSAF(SourceLANDSAF, Dir, Startdate, Enddate, latlim, lonlim):
    """
    This function collects and clip LANDSAF data
				
    Keyword arguments:
    SourceLANDSAF -- 'C:/'  path to the LANDSAF source data (The directory includes SIS and SID)
    Dir -- 'C:/' path to the WA map
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax] (values must be between -60 and 60)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    """

    # Make an array of the days of which the ET is taken
    Dates = pd.date_range(Startdate,Enddate,freq = 'D')			
		
    # make directories
    SISdir = os.path.join(Dir,'Landsaf_Clipped','SIS')
    if os.path.exists(SISdir) is False:
        os.makedirs(SISdir)
        
    SIDdir= os.path.join(Dir,'Landsaf_Clipped','SID')
    if os.path.exists(SIDdir) is False:
        os.makedirs(SIDdir)
       
    ShortwaveBasin(SourceLANDSAF, Dir, latlim, lonlim, Dates=[Startdate,Enddate])
    DEMmap_str=os.path.join(Dir,'HydroSHED','DEM','DEM_HydroShed_m_3s.tif') 
    geo_out, proj, size_X, size_Y = RC.Open_array_info(DEMmap_str)	

    # Open DEM map 
    demmap = RC.Open_tiff_array(DEMmap_str)
    demmap[demmap<0]=0
            
    # make lat and lon arrays)
    dlat = geo_out[5] 
    dlon = geo_out[1]
    lat = geo_out[3] + (np.arange(size_Y)+0.5)*dlat
    lon = geo_out[0] + (np.arange(size_X)+0.5)*dlon			
				
				
    for date in Dates:
        # day of year
        day=date.dayofyear
        Horizontal, Sloping, sinb, sinb_hor, fi, slope, ID  = SlopeInfluence(demmap,lat,lon,day)   
            
                      
        SIDname = os.path.join(SIDdir,'SAF_SID_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')
        SISname = os.path.join(SISdir,'SAF_SIS_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')
            
        #PREPARE SID MAPS
        SIDdest = RC.reproject_dataset_example(SIDname,DEMmap_str,method = 3)																				
        SIDdata=SIDdest.GetRasterBand(1).ReadAsArray()

        #PREPARE SIS MAPS
        SISdest = RC.reproject_dataset_example(SISname,DEMmap_str,method = 3)																				
        SISdata=SISdest.GetRasterBand(1).ReadAsArray()

        # Calculate ShortWave net
        Short_Wave_Net = SIDdata * (Sloping/Horizontal)+SISdata *86400/1e6
        
        # Calculate ShortWave Clear
        Short_Wave = Sloping
        Short_Wave_Clear = Short_Wave *(0.75 + demmap * 2 * 10**-5)
            
        # make directories
        PathClear= os.path.join(Dir,'Landsaf_Clipped','Shortwave_Clear_Sky')
        if os.path.exists(PathClear) is False:
            os.makedirs(PathClear)
            
        PathNet= os.path.join(Dir,'Landsaf_Clipped','Shortwave_Net')
        if os.path.exists(PathNet) is False:
            os.makedirs(PathNet)
                
        # name Shortwave Clear and Net
        nameFileNet='ShortWave_Net_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif' 
        nameNet= os.path.join(PathNet,nameFileNet)
            
        nameFileClear='ShortWave_Clear_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif'
        nameClear= os.path.join(PathClear,nameFileClear)
            
        # Save net and clear short wave radiation
        DC.Save_as_tiff(nameNet, Short_Wave_Net, geo_out, proj)
        DC.Save_as_tiff(nameClear, Short_Wave_Clear, geo_out, proj)							
    return
コード例 #6
0
ファイル: Reservoirs.py プロジェクト: jupaladin/wa
def Find_Area_Volume_Relation(region, input_JRC, DEM_dataset):

    # Find relation between V and A

    import numpy as np
    import wa.General.raster_conversions as RC
    import wa.General.data_conversions as DC
    from scipy.optimize import curve_fit
    import matplotlib.pyplot as plt

    def func(x, a, b):
        """
        This function is used for finding relation area and volume
        
        """
        return (a * x**b)

    def func3(x, a, b, c, d):
        """
        This function is used for finding relation area and volume
        
        """
        return (a * (x - c)**b + d)

    #Array, Geo_out = RC.clip_data(input_JRC,latlim=[14.528,14.985],lonlim =[35.810,36.005])
    Array, Geo_out = RC.clip_data(
        input_JRC,
        latlim=[region[2], region[3]],
        lonlim=[region[0], region[1]
                ])  # This reservoir was not filled when SRTM was taken
    size_Y = int(np.shape([Array])[-2])
    size_X = int(np.shape([Array])[-1])

    Water_array = np.zeros(np.shape(Array))
    buffer_zone = 4
    Array[Array > 0] = 1
    for i in range(0, size_Y):
        for j in range(0, size_X):
            Water_array[i, j] = np.max(Array[
                np.maximum(0, i -
                           buffer_zone):np.minimum(size_Y, i + buffer_zone +
                                                   1),
                np.maximum(0, j -
                           buffer_zone):np.minimum(size_X, j + buffer_zone +
                                                   1)])
    del Array

    # Open DEM and reproject

    # Save Example as memory file
    dest_example = DC.Save_as_MEM(Water_array, Geo_out, projection='WGS84')

    # reproject DEM by using example
    dest_out = RC.reproject_dataset_example(DEM_dataset,
                                            dest_example,
                                            method=2)
    DEM = dest_out.GetRasterBand(1).ReadAsArray()

    # find DEM water heights
    DEM_water = np.zeros(np.shape(Water_array))
    DEM_water[Water_array != 1] = np.nan
    DEM_water[Water_array == 1.] = DEM[Water_array == 1.]

    # Get array with areas
    import wa.Functions.Start.Area_converter as Area
    dlat, dlon = Area.Calc_dlat_dlon(Geo_out, size_X, size_Y)
    area_in_m2 = dlat * dlon

    # find volume and Area
    min_DEM_water = int(np.round(np.nanmin(DEM_water)))
    max_DEM_water = int(np.round(np.nanmax(DEM_water)))

    Reservoir_characteristics = np.zeros([1, 5])
    i = 0

    for height in range(min_DEM_water + 1, max_DEM_water):
        DEM_water_below_height = np.zeros(np.shape(DEM_water))
        DEM_water[np.isnan(DEM_water)] = 1000000
        DEM_water_below_height[DEM_water < height] = 1
        pixels = np.sum(DEM_water_below_height)

        area = np.sum(DEM_water_below_height * area_in_m2)
        if height == min_DEM_water + 1:
            volume = 0.5 * area
            histogram = pixels
            Reservoir_characteristics[:] = [
                height, pixels, area, volume, histogram
            ]
        else:
            area_previous = Reservoir_characteristics[i, 2]
            volume_previous = Reservoir_characteristics[i, 3]
            volume = volume_previous + 0.5 * (
                area - area_previous) + 1 * area_previous
            histogram_previous = Reservoir_characteristics[i, 1]
            histogram = pixels - histogram_previous
            Reservoir_characteristics_one = [
                height, pixels, area, volume, histogram
            ]
            Reservoir_characteristics = np.append(
                Reservoir_characteristics, Reservoir_characteristics_one)
            i += 1
            Reservoir_characteristics = np.resize(Reservoir_characteristics,
                                                  (i + 1, 5))

    maxi = int(len(Reservoir_characteristics[:, 3]))

    # find minimum value for reservoirs height (DEM is same value if reservoir was already filled whe SRTM was created)
    Historgram = Reservoir_characteristics[:, 4]
    hist_mean = np.mean(Historgram)
    hist_std = np.std(Historgram)

    mini_tresh = hist_std * 5 + hist_mean

    Check_hist = np.zeros([len(Historgram)])
    Check_hist[Historgram > mini_tresh] = Historgram[Historgram > mini_tresh]
    if np.max(Check_hist) != 0.0:
        col = np.argwhere(Historgram == np.max(Check_hist))[0][0]
        mini = col + 1
    else:
        mini = 0

    fitted = 0

    # find starting point reservoirs
    V0 = Reservoir_characteristics[mini, 3]
    A0 = Reservoir_characteristics[mini, 2]

    # Calculate the best maxi reservoir characteristics, based on the normal V = a*x**b relation
    while fitted == 0:
        try:
            if mini == 0:
                popt1, pcov1 = curve_fit(
                    func, Reservoir_characteristics[mini:maxi, 2],
                    Reservoir_characteristics[mini:maxi, 3])
            else:
                popt1, pcov1 = curve_fit(
                    func, Reservoir_characteristics[mini:maxi, 2] - A0,
                    Reservoir_characteristics[mini:maxi, 3] - V0)
            fitted = 1
        except:
            maxi -= 1

        if maxi < mini:
            print 'ERROR: was not able to find optimal fit'
            fitted = 1

    # Remove last couple of pixels of maxi
    maxi_end = int(np.round(maxi - 0.2 * (maxi - mini)))

    done = 0
    times = 0

    while done == 0 and times > 20 and maxi_end < mini:
        try:
            if mini == 0:
                popt, pcov = curve_fit(
                    func, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])
            else:
                popt, pcov = curve_fit(
                    func3, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])

        except:
            maxi_end = int(maxi)
            if mini == 0:
                popt, pcov = curve_fit(
                    func, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])
            else:
                popt, pcov = curve_fit(
                    func3, Reservoir_characteristics[mini:maxi_end, 2],
                    Reservoir_characteristics[mini:maxi_end, 3])

        if mini == 0:
            plt.plot(Reservoir_characteristics[mini:maxi_end, 2],
                     Reservoir_characteristics[mini:maxi_end, 3], 'ro')
            t = np.arange(0., np.max(Reservoir_characteristics[:, 2]), 1000)
            plt.plot(t, popt[0] * (t)**popt[1], 'g--')
            plt.axis([
                0,
                np.max(Reservoir_characteristics[mini:maxi_end, 2]), 0,
                np.max(Reservoir_characteristics[mini:maxi_end, 3])
            ])
            plt.show()
            done = 1

        else:
            plt.plot(Reservoir_characteristics[mini:maxi_end, 2],
                     Reservoir_characteristics[mini:maxi_end, 3], 'ro')
            t = np.arange(0., np.max(Reservoir_characteristics[:, 2]), 1000)
            plt.plot(t, popt[0] * (t - popt[2])**popt[1] + popt[3], 'g--')
            plt.axis([
                0,
                np.max(Reservoir_characteristics[mini:maxi_end, 2]), 0,
                np.max(Reservoir_characteristics[mini:maxi_end, 3])
            ])
            plt.show()
            Volume_error = popt[3] / V0 * 100 - 100
            print 'error Volume = %s percent' % Volume_error
            print 'error Area = %s percent' % (A0 / popt[2] * 100 - 100)

            if Volume_error < 30 and Volume_error > -30:
                done = 1
            else:
                times += 1
                maxi_end -= 1
                print 'Another run is done in order to improve the result'

    if done == 0:
        popt = np.append(popt1, [A0, V0])

    if len(popt) == 2:
        popt = np.append(popt, [0, 0])

    return (popt)
コード例 #7
0
ファイル: CalcETref.py プロジェクト: wateraccounting/wa
def calc_ETref(Dir, tmin_str, tmax_str, humid_str, press_str, wind_str, down_short_str, down_long_str, up_long_str, DEMmap_str, DOY):
    """
    This function calculates the ETref by using all the input parameters (path)
    according to FAO standards
    see: http://www.fao.org/docrep/x0490e/x0490e08.htm#TopOfPage
 	
    Keyword arguments:
    tmin_str -- 'C:/'  path to the minimal temperature tiff file [degrees Celcius], e.g. from GLDAS
    tmax_str -- 'C:/'  path to the maximal temperature tiff file [degrees Celcius], e.g. from GLDAS
    humid_str -- 'C:/'  path to the humidity tiff file [kg/kg], e.g. from GLDAS
    press_str -- 'C:/'  path to the air pressure tiff file [kPa], e.g. from GLDAS
    wind_str -- 'C:/'  path to the wind velocity tiff file [m/s], e.g. from GLDAS
    down_short_str -- 'C:/'  path to the downward shortwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF
    down_long_str -- 'C:/'  path to the downward longwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF
    up_long_str -- 'C:/'  path to the upward longwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF			
    DEMmap_str -- 'C:/'  path to the DEM tiff file [m] e.g. from HydroSHED
    DOY -- Day of the year				
    """

    # Get some geo-data to save results
    GeoT, Projection, xsize, ysize = RC.Open_array_info(DEMmap_str)
    #NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(DEMmap_str)
    raster_shape = [xsize, ysize]

    # Create array to store results
    ETref = np.zeros(raster_shape)
								
    # gap fill
    tmin_str_GF = RC.gap_filling(tmin_str,-9999)
    tmax_str_GF = RC.gap_filling(tmax_str,-9999)
    humid_str_GF = RC.gap_filling(humid_str,-9999)
    press_str_GF = RC.gap_filling(press_str,-9999)
    wind_str_GF = RC.gap_filling(wind_str,-9999)
    down_short_str_GF = RC.gap_filling(down_short_str,np.nan)
    down_long_str_GF = RC.gap_filling(down_long_str,np.nan)
    if up_long_str is not 'not':				
        up_long_str_GF = RC.gap_filling(up_long_str,np.nan)
    else:
        up_long_str_GF = 'nan'							
    
    
    #dictionary containing all tthe paths to the input-maps
    inputs = dict({'tmin':tmin_str_GF,'tmax':tmax_str_GF,'humid':humid_str_GF,'press':press_str_GF,'wind':wind_str_GF,'down_short':down_short_str_GF,'down_long':down_long_str_GF,'up_long':up_long_str_GF})
   
    
    #dictionary containing numpy arrays of al initial and intermediate variables    
    input_array = dict({'tmin':None,'tmax':None,'humid':None,'press':None,'wind':None,'albedo':None,'down_short':None,'down_long':None,'up_short':None,'up_long':None,'net_radiation':None,'ea':None,'es':None,'delta':None})
    
    #APPLY LAPSE RATE CORRECTION ON TEMPERATURE
    tmin = lapse_rate(Dir, inputs['tmin'], DEMmap_str)
    tmax = lapse_rate(Dir, inputs['tmax'], DEMmap_str)
				
    #PROCESS PRESSURE MAPS 
    press =adjust_P(Dir, inputs['press'], DEMmap_str)
    
    #PREPARE HUMIDITY MAPS
    dest = RC.reproject_dataset_example(inputs['humid'], DEMmap_str, method = 2)
    humid=dest.GetRasterBand(1).ReadAsArray()
    dest = None
    
    #CORRECT WIND MAPS
    dest = RC.reproject_dataset_example(inputs['wind'], DEMmap_str,method = 2)
    wind=dest.GetRasterBand(1).ReadAsArray()*0.75
    dest = None
   
    #PROCESS GLDAS DATA
    input_array['ea'], input_array['es'], input_array['delta'] = process_GLDAS(tmax,tmin,humid,press)
    
    ea=input_array['ea']
    es=input_array['es']
    delta=input_array['delta']
    
    if up_long_str == 'not':
        
        #CORRECT WIND MAPS
        dest = RC.reproject_dataset_example(down_short_str, DEMmap_str,method = 2)
        Short_Net_data=dest.GetRasterBand(1).ReadAsArray()*0.75
        dest = None    
								
        dest = RC.reproject_dataset_example(down_long_str, DEMmap_str,method = 2)
        Short_Clear_data=dest.GetRasterBand(1).ReadAsArray()*0.75
        dest = None    
								
        # Calculate Long wave Net radiation
        Rnl = 4.903e-9 * (((tmin + 273.16)**4+(tmax + 273.16)**4)/2)*(0.34 - 0.14 * np.sqrt(ea)) * (1.35 * Short_Net_data/Short_Clear_data -0.35)
        
        # Calulate Net Radiation and converted to MJ*d-1*m-2
        net_radiation = (Short_Net_data * 0.77 + Rnl)*86400/10**6
               
       
    else:
        #OPEN DOWNWARD SHORTWAVE RADIATION
        dest = RC.reproject_dataset_example(inputs['down_short'], DEMmap_str,method = 2)
        down_short=dest.GetRasterBand(1).ReadAsArray()
        dest = None
        down_short, tau, bias = slope_correct(down_short,press,ea,DEMmap_str,DOY)
        
        #OPEN OTHER RADS
        up_short = down_short*0.23
        
        dest =  RC.reproject_dataset_example(inputs['down_long'], DEMmap_str,method = 2)
        down_long=dest.GetRasterBand(1).ReadAsArray()
        dest = None
                
        dest =  RC.reproject_dataset_example(inputs['up_long'], DEMmap_str,method = 2)
        up_long=dest.GetRasterBand(1).ReadAsArray()
        dest = None
               
        #OPEN NET RADIATION AND CONVERT W*m-2 TO MJ*d-1*m-2
        net_radiation = ((down_short-up_short) + (down_long-up_long))*86400/10**6
    
        
    #CALCULATE ETref
    ETref = (0.408 * delta * net_radiation + 0.665*10**-3 * 
        press * (900/((tmax+tmin)/2 + 273)) *
        wind * (es - ea)) / (delta + 0.665*10**-3 * 
        press * (1 + 0.34 * wind))
    
    # Set limits ETref      
    ETref[ETref<0]=0
    ETref[ETref>400]=np.nan			
    
    #return a reference ET map (numpy array), a dictionary containing all intermediate information and a bias of the slope correction on down_short
    return ETref
				
				
				
				
				
				
				
				
				

   
			
				
				
				
				
				
				
				
				
コード例 #8
0
ファイル: main.py プロジェクト: wateraccounting/wa
def Calculate(WA_HOME_folder, Basin, P_Product, ET_Product, LAI_Product, ETref_Product, Runoff_Product, Startdate, Enddate, Simulation):
    """
    This functions is the main framework for calculating sheet 4.

    Parameters
    ----------
    Basin : str
        Name of the basin
    P_Product : str
        Name of the rainfall product that will be used
    ET_Product : str
        Name of the evapotranspiration product that will be used
    LAI_Product : str
        Name of the LAI product that will be used
    Runoff_Product : str
        Name of the Runoff product that will be used
    Moving_Averiging_Length, int
        Defines the length of the moving average
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd'
    Simulation : int
        Defines the simulation

    """
    ######################### Import WA modules ###################################

    from wa.General import raster_conversions as RC
    from wa.General import data_conversions as DC
    import wa.Functions.Four as Four
    import wa.Functions.Start as Start
    import wa.Generator.Sheet4 as Generate
    import wa.Functions.Start.Get_Dictionaries as GD

    ######################### Set General Parameters ##############################

    # Get environmental variable for the Home folder
    if WA_HOME_folder == '':
        WA_env_paths = os.environ["WA_HOME"].split(';')
        Dir_Home = WA_env_paths[0]
    else:
        Dir_Home = WA_HOME_folder

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    output_dir = os.path.join(Dir_Basin, "Simulations", "Simulation_%d" %Simulation)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Get the boundaries of the basin based on the shapefile of the watershed
    # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin)
    Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin, Dir_Home)

    # Find the maximum moving window value
    ET_Blue_Green_Classes_dict, Moving_Window_Per_Class_dict = GD.get_bluegreen_classes(version = '1.0')
    Additional_Months_tail = np.max(Moving_Window_Per_Class_dict.values())

    ############## Cut dates into pieces if it is needed ######################

    # Check the years that needs to be calculated
    years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1)

    for year in years:

        # Create .nc file if not exists
        nc_outname = os.path.join(output_dir, "%d.nc" % year)
        if not os.path.exists(nc_outname):
            DC.Create_new_NC_file(nc_outname, Example_dataset, Basin)

        # Open variables in netcdf
        fh = Dataset(nc_outname)
        Variables_NC = [var for var in fh.variables]
        fh.close()

        # Create Start and End date for time chunk
        Startdate_part = '%d-01-01' %int(year)
        Enddate_part = '%s-12-31' %int(year)

        if int(year) == int(years[0]):
            Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset(months = Additional_Months_tail)
            Startdate_Moving_Average_String = Startdate_Moving_Average.strftime('%Y-%m-%d')
        else:
            Startdate_Moving_Average_String = Startdate_part

        ############################# Download Data ###################################

        # Download data
        if not "Precipitation" in Variables_NC:
            Data_Path_P_Monthly = Start.Download_Data.Precipitation(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, P_Product)

        if not "Actual_Evapotranspiration" in Variables_NC:
            Data_Path_ET = Start.Download_Data.Evapotranspiration(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_part, Enddate_part, ET_Product)

        if not "Reference_Evapotranspiration" in Variables_NC:
            Data_Path_ETref = Start.Download_Data.ETreference(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Startdate_Moving_Average_String, Enddate_part, ETref_Product)

        if not "Grey_Water_Footprint" in Variables_NC:
            Data_Path_GWF = Start.Download_Data.GWF(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']])

        if not "Theta_Saturated_Topsoil" in Variables_NC:
            Data_Path_ThetaSat_topsoil = Start.Download_Data.Soil_Properties(Dir_Basin, [Boundaries['Latmin'],Boundaries['Latmax']],[Boundaries['Lonmin'],Boundaries['Lonmax']], Para = 'ThetaSat_TopSoil')

        ###################### Save Data as netCDF files ##############################

        #______________________________Precipitation_______________________________

        # 1.) Precipitation data
        if not "Precipitation" in Variables_NC:
            # Get the data of Precipitation and save as nc
            DataCube_Prec = RC.Get3Darray_time_series_monthly(Data_Path_P_Monthly, Startdate_part, Enddate_part, Example_data = Example_dataset)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Prec, "Precipitation", "mm/month", 0.01)
            del DataCube_Prec

       #_______________________Reference Evaporation______________________________

        # 2.) Reference Evapotranspiration data
        if not "Reference_Evapotranspiration" in Variables_NC:
            # Get the data of Precipitation and save as nc
            DataCube_ETref = RC.Get3Darray_time_series_monthly(Data_Path_ETref, Startdate_part, Enddate_part, Example_data = Example_dataset)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_ETref, "Reference_Evapotranspiration", "mm/month", 0.01)
            del DataCube_ETref

        #_______________________________Evaporation________________________________

        # 3.) Evapotranspiration data
        if not "Actual_Evapotranspiration" in Variables_NC:
            # Get the data of Evaporation and save as nc
            DataCube_ET = RC.Get3Darray_time_series_monthly(Data_Path_ET, Startdate_part, Enddate_part, Example_data = Example_dataset)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_ET, "Actual_Evapotranspiration", "mm/month", 0.01)
            del DataCube_ET

        #_____________________________________GWF__________________________________

        # 4.) Grey Water Footprint data
        if not "Grey_Water_Footprint" in Variables_NC:
            # Get the data of grey water footprint and save as nc
            GWF_Filepath = os.path.join(Dir_Basin, Data_Path_GWF, "Gray_Water_Footprint_Fraction.tif")
            dest_GWF = RC.reproject_dataset_example(GWF_Filepath, Example_dataset, method=1)
            DataCube_GWF = dest_GWF.GetRasterBand(1).ReadAsArray()
            DC.Add_NC_Array_Static(nc_outname, DataCube_GWF, "Grey_Water_Footprint", "fraction", 0.0001)
            del DataCube_GWF

    ####################### Calculations Sheet 4 ##############################

    ############## Cut dates into pieces if it is needed ######################

    years = range(int(Startdate.split('-')[0]),int(Enddate.split('-')[0]) + 1)

    for year in years:

        if len(years) > 1.0:

            if year is years[0]:
                Startdate_part = Startdate
                Enddate_part = '%s-12-31' %year
            if year is years[-1]:
                Startdate_part = '%s-01-01' %year
                Enddate_part = Enddate

        else:
            Startdate_part = Startdate
            Enddate_part = Enddate

        #____________ Evapotranspiration data split in ETblue and ETgreen ____________

        if not ("Blue_Evapotranspiration" in Variables_NC or "Green_Evapotranspiration" in Variables_NC):

            # Calculate Blue and Green ET
            DataCube_ETblue, DataCube_ETgreen = Four.SplitET.Blue_Green(Dir_Basin, nc_outname, ETref_Product, P_Product, Startdate, Enddate)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_ETblue, "Blue_Evapotranspiration", "mm/month", 0.01)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_ETgreen, "Green_Evapotranspiration", "mm/month", 0.01)
            del DataCube_ETblue, DataCube_ETgreen

        #____________ Calculate non-consumend and Total supply maps by using fractions and consumed maps (blue ET) ____________

        if not ("Total_Supply" in Variables_NC or "Non_Consumed_Water" in Variables_NC):

            # Do the calculations
            DataCube_Total_Supply, DataCube_Non_Consumed = Four.Total_Supply.Fraction_Based(nc_outname, Startdate_part, Enddate_part)

            # Save the Total Supply and non consumed data as NetCDF files
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply, "Total_Supply", "mm/month", 0.01)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Non_Consumed, "Non_Consumed_Water", "mm/month", 0.01)
            del DataCube_Total_Supply, DataCube_Non_Consumed

        #____________ Apply fractions over total supply to calculate gw and sw supply ____________

        if not ("Total_Supply_Surface_Water" in Variables_NC or "Total_Supply_Ground_Water" in Variables_NC):

            # Do the calculations
            DataCube_Total_Supply_SW, DataCube_Total_Supply_GW = Four.SplitGW_SW_Supply.Fraction_Based(nc_outname, Startdate_part, Enddate_part)

            # Save the Total Supply surface water and Total Supply ground water data as NetCDF files
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply_SW, "Total_Supply_Surface_Water", "mm/month", 0.01)
            DC.Add_NC_Array_Variable(nc_outname, DataCube_Total_Supply_GW, "Total_Supply_Ground_Water", "mm/month", 0.01)
            del DataCube_Total_Supply_SW, DataCube_Total_Supply_GW

        #____________ Apply gray water footprint fractions to calculated non recoverable flow based on the non consumed flow ____________


        if not ("Non_Recovable_Flow" in Variables_NC or "Recovable_Flow" in Variables_NC):

            # Calculate the non recovable flow and recovable flow by using Grey Water Footprint values
            DataCube_NonRecovableFlow, Datacube_RecovableFlow = Four.SplitNonConsumed_NonRecov.GWF_Based(nc_outname, Startdate_part, Enddate_part)

            # Get the data of Evaporation and save as nc
            DC.Add_NC_Array_Variable(nc_outname, DataCube_NonRecovableFlow, "Non_Recovable_Flow", "mm/month", 0.01)
            DC.Add_NC_Array_Variable(nc_outname, Datacube_RecovableFlow, "Recovable_Flow", "mm/month", 0.01)
            del DataCube_NonRecovableFlow, Datacube_RecovableFlow

        #____________Apply fractions to calculate the non recovarable SW/GW and recovarable SW/GW ____________

        # 1. Non recovarable flow
        if not ("Non_Recovable_Flow_Ground_Water" in Variables_NC or "Non_Recovable_Flow_Surface_Water" in Variables_NC):

            # Calculate the non recovable return flow to ground and surface water
            DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(nc_outname, "Non_Recovable_Flow", Startdate_part, Enddate_part)

            # Get the data of Evaporation and save as nc
            DC.Add_NC_Array_Variable(nc_outname, DataCube_NonRecovableFlow_Return_GW, "Non_Recovable_Flow_Ground_Water", "mm/month", 0.01)
            DC.Add_NC_Array_Variable(nc_outname, Datacube_NonRecovableFlow_Return_SW, "Non_Recovable_Flow_Surface_Water", "mm/month", 0.01)
            del DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW

        # 2. Recovarable flow
        if not ("Recovable_Flow_Ground_Water" in Variables_NC or "Recovable_Flow_Surface_Water" in Variables_NC):

            # Calculate the non recovable return flow to ground and surface water
            DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(nc_outname, "Recovable_Flow", Startdate_part, Enddate_part)

            # Get the data of Evaporation and save as nc
            DC.Add_NC_Array_Variable(nc_outname, DataCube_RecovableFlow_Return_GW, "Recovable_Flow_Ground_Water", "mm/month", 0.01)
            DC.Add_NC_Array_Variable(nc_outname, Datacube_RecovableFlow_Return_SW, "Recovable_Flow_Surface_Water", "mm/month", 0.01)
            del DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW

        ############################ Create CSV 4 #################################

        Dir_Basin_CSV, Unit_front = Generate.CSV.Create(Dir_Basin, Simulation, Basin, Startdate_part, Enddate_part, nc_outname)

    ############################ Create Sheet 4 ###############################

    Generate.PDF.Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV, Unit_front)

    return()
コード例 #9
0
def CollectLANDSAF(SourceLANDSAF, Dir, Startdate, Enddate, latlim, lonlim):
    """
    This function collects and clip LANDSAF data
				
    Keyword arguments:
    SourceLANDSAF -- 'C:/'  path to the LANDSAF source data (The directory includes SIS and SID)
    Dir -- 'C:/' path to the WA map
    Startdate -- 'yyyy-mm-dd'
    Enddate -- 'yyyy-mm-dd'
    latlim -- [ymin, ymax] (values must be between -60 and 60)
    lonlim -- [xmin, xmax] (values must be between -180 and 180)
    """

    # Make an array of the days of which the ET is taken
    Dates = pd.date_range(Startdate, Enddate, freq='D')

    # make directories
    SISdir = os.path.join(Dir, 'Landsaf_Clipped', 'SIS')
    if os.path.exists(SISdir) is False:
        os.makedirs(SISdir)

    SIDdir = os.path.join(Dir, 'Landsaf_Clipped', 'SID')
    if os.path.exists(SIDdir) is False:
        os.makedirs(SIDdir)

    ShortwaveBasin(SourceLANDSAF,
                   Dir,
                   latlim,
                   lonlim,
                   Dates=[Startdate, Enddate])
    DEMmap_str = os.path.join(Dir, 'HydroSHED', 'DEM',
                              'DEM_HydroShed_m_3s.tif')
    geo_out, proj, size_X, size_Y = RC.Open_array_info(DEMmap_str)

    # Open DEM map
    demmap = RC.Open_tiff_array(DEMmap_str)
    demmap[demmap < 0] = 0

    # make lat and lon arrays)
    dlat = geo_out[5]
    dlon = geo_out[1]
    lat = geo_out[3] + (np.arange(size_Y) + 0.5) * dlat
    lon = geo_out[0] + (np.arange(size_X) + 0.5) * dlon

    for date in Dates:
        # day of year
        day = date.dayofyear
        Horizontal, Sloping, sinb, sinb_hor, fi, slope, ID = SlopeInfluence(
            demmap, lat, lon, day)

        SIDname = os.path.join(
            SIDdir, 'SAF_SID_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')
        SISname = os.path.join(
            SISdir, 'SAF_SIS_Daily_W-m2_' + date.strftime('%Y-%m-%d') + '.tif')

        #PREPARE SID MAPS
        SIDdest = RC.reproject_dataset_example(SIDname, DEMmap_str, method=3)
        SIDdata = SIDdest.GetRasterBand(1).ReadAsArray()

        #PREPARE SIS MAPS
        SISdest = RC.reproject_dataset_example(SISname, DEMmap_str, method=3)
        SISdata = SISdest.GetRasterBand(1).ReadAsArray()

        # Calculate ShortWave net
        Short_Wave_Net = SIDdata * (Sloping /
                                    Horizontal) + SISdata * 86400 / 1e6

        # Calculate ShortWave Clear
        Short_Wave = Sloping
        Short_Wave_Clear = Short_Wave * (0.75 + demmap * 2 * 10**-5)

        # make directories
        PathClear = os.path.join(Dir, 'Landsaf_Clipped', 'Shortwave_Clear_Sky')
        if os.path.exists(PathClear) is False:
            os.makedirs(PathClear)

        PathNet = os.path.join(Dir, 'Landsaf_Clipped', 'Shortwave_Net')
        if os.path.exists(PathNet) is False:
            os.makedirs(PathNet)

        # name Shortwave Clear and Net
        nameFileNet = 'ShortWave_Net_Daily_W-m2_' + date.strftime(
            '%Y-%m-%d') + '.tif'
        nameNet = os.path.join(PathNet, nameFileNet)

        nameFileClear = 'ShortWave_Clear_Daily_W-m2_' + date.strftime(
            '%Y-%m-%d') + '.tif'
        nameClear = os.path.join(PathClear, nameFileClear)

        # Save net and clear short wave radiation
        DC.Save_as_tiff(nameNet, Short_Wave_Net, geo_out, proj)
        DC.Save_as_tiff(nameClear, Short_Wave_Clear, geo_out, proj)
    return
コード例 #10
0
def Find_Area_Volume_Relation(region, input_JRC, input_nc):
  
    # Find relation between V and A    
    
    import numpy as np
    import wa.General.raster_conversions as RC
    import wa.General.data_conversions as DC
    from scipy.optimize import curve_fit
    import matplotlib.pyplot as plt
    
    def func(x,a,b):
        """
        This function is used for finding relation area and volume
        
        """
        return(a*x**b)  
   
        
    def func3(x,a,b,c,d):
        """
        This function is used for finding relation area and volume
        
        """
        return(a*(x-c)**b+d)  

    #Array, Geo_out = RC.clip_data(input_JRC,latlim=[14.528,14.985],lonlim =[35.810,36.005])
    Array, Geo_out = RC.clip_data(input_JRC,latlim=[region[2],region[3]],lonlim =[region[0],region[1]])   # This reservoir was not filled when SRTM was taken  
    size_Y = int(np.shape([Array])[-2])
    size_X = int(np.shape([Array])[-1])
    
    Water_array = np.zeros(np.shape(Array))
    buffer_zone = 4
    Array[Array > 0] = 1
    for i in range(0,size_Y):
        for j in range(0,size_X):
            Water_array[i,j]=np.max(Array[np.maximum(0,i-buffer_zone):np.minimum(size_Y,i+buffer_zone+1),np.maximum(0,j-buffer_zone):np.minimum(size_X,j+buffer_zone+1)])
    del Array
    
    # Open DEM and reproject   
    DEM_Array = RC.Open_nc_array(input_nc, "dem" )
    Geo_out_dem, proj_dem, size_X_dem, size_Y_dem, size_Z_dem, time = RC.Open_nc_info(input_nc)
    
    # Save Example as memory file
    dest_example = DC.Save_as_MEM(Water_array, Geo_out, projection='WGS84')   
    dest_dem = DC.Save_as_MEM(DEM_Array, Geo_out_dem, projection='WGS84')   

    # reproject DEM by using example
    dest_out=RC.reproject_dataset_example(dest_dem, dest_example, method=2)
    DEM=dest_out.GetRasterBand(1).ReadAsArray()
        
    # find DEM water heights
    DEM_water = np.zeros(np.shape(Water_array))
    DEM_water[Water_array != 1] = np.nan   
    DEM_water[Water_array == 1.] = DEM[Water_array == 1.] 
        
    # Get array with areas
    import wa.Functions.Start.Area_converter as Area
    dlat, dlon = Area.Calc_dlat_dlon(Geo_out, size_X, size_Y)
    area_in_m2 =  dlat * dlon
        
    # find volume and Area
    min_DEM_water = int(np.round(np.nanmin(DEM_water)))    
    max_DEM_water = int(np.round(np.nanmax(DEM_water)))      
     
    Reservoir_characteristics = np.zeros([1,5])
    i = 0   
    
    for height in range(min_DEM_water+1, max_DEM_water):
        DEM_water_below_height = np.zeros(np.shape(DEM_water))
        DEM_water[np.isnan(DEM_water)] = 1000000
        DEM_water_below_height[DEM_water < height] = 1                   
        pixels = np.sum(DEM_water_below_height)
       
        area = np.sum(DEM_water_below_height * area_in_m2)
        if height == min_DEM_water + 1:
            volume = 0.5 * area
            histogram = pixels 
            Reservoir_characteristics[:] = [height, pixels, area, volume, histogram]
        else:
            area_previous = Reservoir_characteristics[i, 2]
            volume_previous = Reservoir_characteristics[i, 3]
            volume = volume_previous + 0.5 * (area - area_previous) + 1 * area_previous
            histogram_previous = Reservoir_characteristics[i, 1]                                 
            histogram = pixels - histogram_previous 
            Reservoir_characteristics_one = [height, pixels, area, volume, histogram]
            Reservoir_characteristics = np.append(Reservoir_characteristics,Reservoir_characteristics_one)
            i += 1
            Reservoir_characteristics = np.resize(Reservoir_characteristics, (i+1,5))
       
    maxi = int(len(Reservoir_characteristics[:,3]))

    # find minimum value for reservoirs height (DEM is same value if reservoir was already filled whe SRTM was created)
    Historgram = Reservoir_characteristics[:,4]
    hist_mean = np.mean(Historgram)
    hist_std = np.std(Historgram)
    
    mini_tresh = hist_std * 5 + hist_mean
    
    Check_hist = np.zeros([len(Historgram)])
    Check_hist[Historgram>mini_tresh] = Historgram[Historgram>mini_tresh] 
    if np.max(Check_hist) != 0.0:
        col = np.argwhere(Historgram == np.max(Check_hist))[0][0]
        mini = col + 1
    else:
        mini = 0
    
    fitted = 0
    
    # find starting point reservoirs
    V0 = Reservoir_characteristics[mini,3]
    A0 = Reservoir_characteristics[mini,2]


    # Calculate the best maxi reservoir characteristics, based on the normal V = a*x**b relation
    while fitted == 0:
        try:
            if mini == 0:
                popt1, pcov1 = curve_fit(func, Reservoir_characteristics[mini:maxi,2], Reservoir_characteristics[mini:maxi,3])
            else:
                popt1, pcov1 = curve_fit(func, Reservoir_characteristics[mini:maxi,2] - A0, Reservoir_characteristics[mini:maxi,3]-V0)   
            fitted = 1
        except:
            maxi -= 1
        
        if maxi < mini:
            print 'ERROR: was not able to find optimal fit'
            fitted = 1
        

    # Remove last couple of pixels of maxi
    maxi_end = int(np.round(maxi - 0.2 * (maxi - mini)))   

    done = 0
    times = 0
    
    while done == 0 and times > 20 and maxi_end < mini:
        try:
            if mini == 0:
                popt, pcov = curve_fit(func, Reservoir_characteristics[mini:maxi_end,2], Reservoir_characteristics[mini:maxi_end,3])  
            else:
                popt, pcov = curve_fit(func3, Reservoir_characteristics[mini:maxi_end,2], Reservoir_characteristics[mini:maxi_end,3]) 
        
        except:
            maxi_end = int(maxi) 
            if mini == 0:
                popt, pcov = curve_fit(func, Reservoir_characteristics[mini:maxi_end,2], Reservoir_characteristics[mini:maxi_end,3])     
            else:
                popt, pcov = curve_fit(func3, Reservoir_characteristics[mini:maxi_end,2], Reservoir_characteristics[mini:maxi_end,3]) 
    

        if mini == 0:
            plt.plot(Reservoir_characteristics[mini:maxi_end,2], Reservoir_characteristics[mini:maxi_end,3], 'ro')
            t = np.arange(0., np.max(Reservoir_characteristics[:,2]), 1000)
            plt.plot(t, popt[0]*(t)**popt[1], 'g--')   
            plt.axis([0, np.max(Reservoir_characteristics[mini:maxi_end,2]), 0, np.max(Reservoir_characteristics[mini:maxi_end,3])]) 
            plt.show()   
            done = 1
    
        else:
            plt.plot(Reservoir_characteristics[mini:maxi_end,2], Reservoir_characteristics[mini:maxi_end,3], 'ro')
            t = np.arange(0., np.max(Reservoir_characteristics[:,2]), 1000)
            plt.plot(t, popt[0]*(t-popt[2])**popt[1] + popt[3], 'g--')   
            plt.axis([0, np.max(Reservoir_characteristics[mini:maxi_end,2]), 0, np.max(Reservoir_characteristics[mini:maxi_end,3])]) 
            plt.show()   
            Volume_error = popt[3]/V0 * 100 - 100
            print 'error Volume = %s percent' %Volume_error
            print 'error Area = %s percent' %(A0/popt[2] * 100 - 100)
    
            if Volume_error < 30 and Volume_error > -30:
                done = 1
            else:
                times += 1
                maxi_end -= 1
                print 'Another run is done in order to improve the result'
                
    if done == 0:
        popt = np.append(popt1, [A0, V0])
    
    if len(popt) == 2:
        popt = np.append(popt, [0, 0])
    
    return(popt)
コード例 #11
0
def calc_ETref(Dir, tmin_str, tmax_str, humid_str, press_str, wind_str,
               down_short_str, down_long_str, up_long_str, DEMmap_str, DOY):
    """
    This function calculates the ETref by using all the input parameters (path)
    according to FAO standards
    see: http://www.fao.org/docrep/x0490e/x0490e08.htm#TopOfPage
 	
    Keyword arguments:
    tmin_str -- 'C:/'  path to the minimal temperature tiff file [degrees Celcius], e.g. from GLDAS
    tmax_str -- 'C:/'  path to the maximal temperature tiff file [degrees Celcius], e.g. from GLDAS
    humid_str -- 'C:/'  path to the humidity tiff file [kg/kg], e.g. from GLDAS
    press_str -- 'C:/'  path to the air pressure tiff file [kPa], e.g. from GLDAS
    wind_str -- 'C:/'  path to the wind velocity tiff file [m/s], e.g. from GLDAS
    down_short_str -- 'C:/'  path to the downward shortwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF
    down_long_str -- 'C:/'  path to the downward longwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF
    up_long_str -- 'C:/'  path to the upward longwave radiation tiff file [W*m-2], e.g. from CFSR/LANDSAF			
    DEMmap_str -- 'C:/'  path to the DEM tiff file [m] e.g. from HydroSHED
    DOY -- Day of the year				
    """

    # Get some geo-data to save results
    GeoT, Projection, xsize, ysize = RC.Open_array_info(DEMmap_str)
    #NDV, xsize, ysize, GeoT, Projection, DataType = GetGeoInfo(DEMmap_str)
    raster_shape = [xsize, ysize]

    # Create array to store results
    ETref = np.zeros(raster_shape)

    # gap fill
    tmin_str_GF = RC.gap_filling(tmin_str, -9999)
    tmax_str_GF = RC.gap_filling(tmax_str, -9999)
    humid_str_GF = RC.gap_filling(humid_str, -9999)
    press_str_GF = RC.gap_filling(press_str, -9999)
    wind_str_GF = RC.gap_filling(wind_str, -9999)
    down_short_str_GF = RC.gap_filling(down_short_str, np.nan)
    down_long_str_GF = RC.gap_filling(down_long_str, np.nan)
    if up_long_str is not 'not':
        up_long_str_GF = RC.gap_filling(up_long_str, np.nan)
    else:
        up_long_str_GF = 'nan'

    #dictionary containing all tthe paths to the input-maps
    inputs = dict({
        'tmin': tmin_str_GF,
        'tmax': tmax_str_GF,
        'humid': humid_str_GF,
        'press': press_str_GF,
        'wind': wind_str_GF,
        'down_short': down_short_str_GF,
        'down_long': down_long_str_GF,
        'up_long': up_long_str_GF
    })

    #dictionary containing numpy arrays of al initial and intermediate variables
    input_array = dict({
        'tmin': None,
        'tmax': None,
        'humid': None,
        'press': None,
        'wind': None,
        'albedo': None,
        'down_short': None,
        'down_long': None,
        'up_short': None,
        'up_long': None,
        'net_radiation': None,
        'ea': None,
        'es': None,
        'delta': None
    })

    #APPLY LAPSE RATE CORRECTION ON TEMPERATURE
    tmin = lapse_rate(Dir, inputs['tmin'], DEMmap_str)
    tmax = lapse_rate(Dir, inputs['tmax'], DEMmap_str)

    #PROCESS PRESSURE MAPS
    press = adjust_P(Dir, inputs['press'], DEMmap_str)

    #PREPARE HUMIDITY MAPS
    dest = RC.reproject_dataset_example(inputs['humid'], DEMmap_str, method=2)
    humid = dest.GetRasterBand(1).ReadAsArray()
    dest = None

    #CORRECT WIND MAPS
    dest = RC.reproject_dataset_example(inputs['wind'], DEMmap_str, method=2)
    wind = dest.GetRasterBand(1).ReadAsArray() * 0.75
    dest = None

    #PROCESS GLDAS DATA
    input_array['ea'], input_array['es'], input_array['delta'] = process_GLDAS(
        tmax, tmin, humid, press)

    ea = input_array['ea']
    es = input_array['es']
    delta = input_array['delta']

    if up_long_str == 'not':

        #CORRECT WIND MAPS
        dest = RC.reproject_dataset_example(down_short_str,
                                            DEMmap_str,
                                            method=2)
        Short_Net_data = dest.GetRasterBand(1).ReadAsArray() * 0.75
        dest = None

        dest = RC.reproject_dataset_example(down_long_str,
                                            DEMmap_str,
                                            method=2)
        Short_Clear_data = dest.GetRasterBand(1).ReadAsArray() * 0.75
        dest = None

        # Calculate Long wave Net radiation
        Rnl = 4.903e-9 * (
            ((tmin + 273.16)**4 +
             (tmax + 273.16)**4) / 2) * (0.34 - 0.14 * np.sqrt(ea)) * (
                 1.35 * Short_Net_data / Short_Clear_data - 0.35)

        # Calulate Net Radiation and converted to MJ*d-1*m-2
        net_radiation = (Short_Net_data * 0.77 + Rnl) * 86400 / 10**6

    else:
        #OPEN DOWNWARD SHORTWAVE RADIATION
        dest = RC.reproject_dataset_example(inputs['down_short'],
                                            DEMmap_str,
                                            method=2)
        down_short = dest.GetRasterBand(1).ReadAsArray()
        dest = None
        down_short, tau, bias = slope_correct(down_short, press, ea,
                                              DEMmap_str, DOY)

        #OPEN OTHER RADS
        up_short = down_short * 0.23

        dest = RC.reproject_dataset_example(inputs['down_long'],
                                            DEMmap_str,
                                            method=2)
        down_long = dest.GetRasterBand(1).ReadAsArray()
        dest = None

        dest = RC.reproject_dataset_example(inputs['up_long'],
                                            DEMmap_str,
                                            method=2)
        up_long = dest.GetRasterBand(1).ReadAsArray()
        dest = None

        #OPEN NET RADIATION AND CONVERT W*m-2 TO MJ*d-1*m-2
        net_radiation = ((down_short - up_short) +
                         (down_long - up_long)) * 86400 / 10**6

    #CALCULATE ETref
    ETref = (0.408 * delta * net_radiation + 0.665 * 10**-3 * press *
             (900 / ((tmax + tmin) / 2 + 273)) * wind *
             (es - ea)) / (delta + 0.665 * 10**-3 * press * (1 + 0.34 * wind))

    # Set limits ETref
    ETref[ETref < 0] = 0
    ETref[ETref > 400] = np.nan

    #return a reference ET map (numpy array), a dictionary containing all intermediate information and a bias of the slope correction on down_short
    return ETref
コード例 #12
0
ファイル: Create_input_nc.py プロジェクト: wateraccounting/wa
def main(files_DEM_dir, files_DEM, files_Basin, files_Runoff, files_Extraction,
         startdate, enddate, input_nc, resolution, Format_DEM_dir, Format_DEM,
         Format_Basin, Format_Runoff, Format_Extraction):

    # Define a year to get the epsg and geo
    Startdate_timestamp = pd.Timestamp(startdate)
    year = Startdate_timestamp.year

    ############################## Drainage Direction #####################################

    # Open Array DEM dir as netCDF
    if Format_DEM_dir == "NetCDF":
        file_DEM_dir = os.path.join(files_DEM_dir, "%d.nc" % year)
        DataCube_DEM_dir = RC.Open_nc_array(file_DEM_dir, "Drainage_Direction")
        geo_out_example, epsg_example, size_X_example, size_Y_example, size_Z_example, Time_example = RC.Open_nc_info(
            files_DEM_dir)

        # Create memory file for reprojection
        gland = DC.Save_as_MEM(DataCube_DEM_dir, geo_out_example, epsg_example)
        dataset_example = file_name_DEM_dir = gland

    # Open Array DEM dir as TIFF
    if Format_DEM_dir == "TIFF":
        file_name_DEM_dir = os.path.join(files_DEM_dir,
                                         "DIR_HydroShed_-_%s.tif" % resolution)
        DataCube_DEM_dir = RC.Open_tiff_array(file_name_DEM_dir)
        geo_out_example, epsg_example, size_X_example, size_Y_example = RC.Open_array_info(
            file_name_DEM_dir)
        dataset_example = file_name_DEM_dir

    # Calculate Area per pixel in m2
    import wa.Functions.Start.Area_converter as AC
    DataCube_Area = AC.Degrees_to_m2(file_name_DEM_dir)

    ################################## DEM ##########################################

    # Open Array DEM as netCDF
    if Format_DEM == "NetCDF":
        file_DEM = os.path.join(files_DEM, "%d.nc" % year)
        DataCube_DEM = RC.Open_nc_array(file_DEM, "Elevation")

    # Open Array DEM as TIFF
    if Format_DEM == "TIFF":
        file_name_DEM = os.path.join(files_DEM,
                                     "DEM_HydroShed_m_%s.tif" % resolution)
        DataCube_DEM = RC.Open_tiff_array(file_name_DEM)

    ################################ Landuse ##########################################

    # Open Array Basin as netCDF
    if Format_Basin == "NetCDF":
        file_Basin = os.path.join(files_Basin, "%d.nc" % year)
        DataCube_Basin = RC.Open_nc_array(file_Basin, "Landuse")
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(
            file_Basin, "Landuse")
        dest_basin = DC.Save_as_MEM(DataCube_Basin, geo_out, str(epsg))
        destLU = RC.reproject_dataset_example(dest_basin,
                                              dataset_example,
                                              method=1)
        DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()
        DataCube_Basin = np.zeros([size_Y_example, size_X_example])
        DataCube_Basin[DataCube_LU_CR > 0] = 1

    # Open Array Basin as TIFF
    if Format_Basin == "TIFF":
        file_name_Basin = files_Basin
        destLU = RC.reproject_dataset_example(file_name_Basin,
                                              dataset_example,
                                              method=1)
        DataCube_LU_CR = destLU.GetRasterBand(1).ReadAsArray()
        DataCube_Basin = np.zeros([size_Y_example, size_X_example])
        DataCube_Basin[DataCube_LU_CR > 0] = 1

    ################################ Surface Runoff ##########################################

    # Open Array runoff as netCDF
    if Format_Runoff == "NetCDF":
        DataCube_Runoff = RC.Open_ncs_array(files_Runoff, "Surface_Runoff",
                                            startdate, enddate)
        size_Z_example = DataCube_Runoff.shape[0]
        file_Runoff = os.path.join(files_Runoff, "%d.nc" % year)
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(
            file_Runoff, "Surface_Runoff")
        DataCube_Runoff_CR = np.ones(
            [size_Z_example, size_Y_example, size_X_example]) * np.nan
        for i in range(0, size_Z):
            DataCube_Runoff_one = DataCube_Runoff[i, :, :]
            dest_Runoff_one = DC.Save_as_MEM(DataCube_Runoff_one, geo_out,
                                             str(epsg))
            dest_Runoff = RC.reproject_dataset_example(dest_Runoff_one,
                                                       dataset_example,
                                                       method=4)
            DataCube_Runoff_CR[i, :, :] = dest_Runoff.GetRasterBand(
                1).ReadAsArray()

        DataCube_Runoff_CR[:, DataCube_LU_CR == 0] = -9999
        DataCube_Runoff_CR[DataCube_Runoff_CR < 0] = -9999

    # Open Array runoff as TIFF
    if Format_Runoff == "TIFF":
        Data_Path = ''
        DataCube_Runoff = RC.Get3Darray_time_series_monthly(
            files_Runoff,
            Data_Path,
            startdate,
            enddate,
            Example_data=dataset_example)

    ################################ Surface Withdrawal ##########################################

    # Open Array Extraction as netCDF
    if Format_Extraction == "NetCDF":
        DataCube_Extraction = RC.Open_ncs_array(files_Extraction,
                                                "Surface_Withdrawal",
                                                startdate, enddate)
        size_Z_example = DataCube_Extraction.shape[0]
        file_Extraction = os.path.join(files_Extraction, "%d.nc" % year)
        geo_out, epsg, size_X, size_Y, size_Z, Time = RC.Open_nc_info(
            file_Extraction, "Surface_Withdrawal")
        DataCube_Extraction_CR = np.ones(
            [size_Z_example, size_Y_example, size_X_example]) * np.nan
        for i in range(0, size_Z):
            DataCube_Extraction_one = DataCube_Extraction[i, :, :]
            dest_Extraction_one = DC.Save_as_MEM(DataCube_Extraction_one,
                                                 geo_out, str(epsg))
            dest_Extraction = RC.reproject_dataset_example(dest_Extraction_one,
                                                           dataset_example,
                                                           method=4)
            DataCube_Extraction_CR[i, :, :] = dest_Extraction.GetRasterBand(
                1).ReadAsArray()

        DataCube_Extraction_CR[:, DataCube_LU_CR == 0] = -9999
        DataCube_Extraction_CR[DataCube_Extraction_CR < 0] = -9999

    # Open Array Extraction as TIFF
    if Format_Extraction == "TIFF":
        Data_Path = ''
        DataCube_Extraction = RC.Get3Darray_time_series_monthly(
            files_Extraction,
            Data_Path,
            startdate,
            enddate,
            Example_data=dataset_example)

    ################################ Create input netcdf ##########################################
    # Save data in one NetCDF file
    geo_out_example = np.array(geo_out_example)

    # Latitude and longitude
    lon_ls = np.arange(size_X_example) * geo_out_example[1] + geo_out_example[
        0] + 0.5 * geo_out_example[1]
    lat_ls = np.arange(size_Y_example) * geo_out_example[5] + geo_out_example[
        3] - 0.5 * geo_out_example[5]

    lat_n = len(lat_ls)
    lon_n = len(lon_ls)

    # Create NetCDF file
    nc_file = netCDF4.Dataset(input_nc, 'w')
    nc_file.set_fill_on()

    # Create dimensions
    lat_dim = nc_file.createDimension('latitude', lat_n)
    lon_dim = nc_file.createDimension('longitude', lon_n)

    # Create NetCDF variables
    crso = nc_file.createVariable('crs', 'i4')
    crso.long_name = 'Lon/Lat Coords in WGS84'
    crso.standard_name = 'crs'
    crso.grid_mapping_name = 'latitude_longitude'
    crso.projection = epsg_example
    crso.longitude_of_prime_meridian = 0.0
    crso.semi_major_axis = 6378137.0
    crso.inverse_flattening = 298.257223563
    crso.geo_reference = geo_out_example

    lat_var = nc_file.createVariable('latitude', 'f8', ('latitude', ))
    lat_var.units = 'degrees_north'
    lat_var.standard_name = 'latitude'
    lat_var.pixel_size = geo_out_example[5]

    lon_var = nc_file.createVariable('longitude', 'f8', ('longitude', ))
    lon_var.units = 'degrees_east'
    lon_var.standard_name = 'longitude'
    lon_var.pixel_size = geo_out_example[1]

    Dates = pd.date_range(startdate, enddate, freq='MS')
    time_or = np.zeros(len(Dates))
    i = 0
    for Date in Dates:
        time_or[i] = Date.toordinal()
        i += 1
    nc_file.createDimension('time', None)
    timeo = nc_file.createVariable('time', 'f4', ('time', ))
    timeo.units = 'Monthly'
    timeo.standard_name = 'time'

    # Variables
    demdir_var = nc_file.createVariable('demdir',
                                        'i', ('latitude', 'longitude'),
                                        fill_value=-9999)
    demdir_var.long_name = 'Flow Direction Map'
    demdir_var.grid_mapping = 'crs'

    dem_var = nc_file.createVariable('dem',
                                     'f8', ('latitude', 'longitude'),
                                     fill_value=-9999)
    dem_var.long_name = 'Altitude'
    dem_var.units = 'meters'
    dem_var.grid_mapping = 'crs'

    basin_var = nc_file.createVariable('basin',
                                       'i', ('latitude', 'longitude'),
                                       fill_value=-9999)
    basin_var.long_name = 'Altitude'
    basin_var.units = 'meters'
    basin_var.grid_mapping = 'crs'

    area_var = nc_file.createVariable('area',
                                      'f8', ('latitude', 'longitude'),
                                      fill_value=-9999)
    area_var.long_name = 'area in squared meters'
    area_var.units = 'squared_meters'
    area_var.grid_mapping = 'crs'

    runoff_var = nc_file.createVariable('Runoff_M',
                                        'f8',
                                        ('time', 'latitude', 'longitude'),
                                        fill_value=-9999)
    runoff_var.long_name = 'Runoff'
    runoff_var.units = 'm3/month'
    runoff_var.grid_mapping = 'crs'

    extraction_var = nc_file.createVariable('Extraction_M',
                                            'f8',
                                            ('time', 'latitude', 'longitude'),
                                            fill_value=-9999)
    extraction_var.long_name = 'Surface water Extraction'
    extraction_var.units = 'm3/month'
    extraction_var.grid_mapping = 'crs'

    # Load data
    lat_var[:] = lat_ls
    lon_var[:] = lon_ls
    timeo[:] = time_or

    # Static variables
    demdir_var[:, :] = DataCube_DEM_dir[:, :]
    dem_var[:, :] = DataCube_DEM[:, :]
    basin_var[:, :] = DataCube_Basin[:, :]
    area_var[:, :] = DataCube_Area[:, :]
    for i in range(len(Dates)):
        runoff_var[i, :, :] = DataCube_Runoff_CR[i, :, :]
    for i in range(len(Dates)):
        extraction_var[i, :, :] = DataCube_Extraction_CR[i, :, :]

    # Close file
    nc_file.close()
    return ()
コード例 #13
0
ファイル: Read_WaterPIX.py プロジェクト: wateraccounting/wa
def Get_Array(nc_filename_waterpix, Var_name, Example_dataset, Startdate,
              Enddate):

    #import general modules
    import numpy as np
    import pandas as pd
    from netCDF4 import Dataset
    import gdal
    import osr

    #import WA+ modules
    import wa.General.raster_conversions as RC
    '''
    #input files
    Name_NC_Runoff_CR = r'F:\\Create_Sheets\\Litani\\Simulations\\Simulation_1\\Sheet_5\\Runoff_CR_Simulation1_monthly_mm_012010_122010.nc'
    Example_dataset = r"F:\Create_Sheets\Litani\HydroSHED\DIR\DIR_HydroShed_-_15s.tif"
    NC_filename = "F:\Create_Sheets\Litani\WaterPIX\Litani.nc"
    Startdate = "2010-01-01"
    Enddate = "2010-12-31"
    Var = 'SurfaceRunoff_M'
    '''

    # Define Dates
    Dates = pd.date_range(Startdate, Enddate, freq="MS")

    # Define end and start date
    Start = '%d%02d' % (Dates[0].year, Dates[0].month)
    End = '%d%02d' % (Dates[-1].year, Dates[-1].month)

    # Open netcdf of WaterPIX
    fh = Dataset(nc_filename_waterpix, 'r')

    # Get time series of WaterPIX
    time = fh.variables['time_yyyymm'][:]

    # Define time steps that are needed from WaterPIX
    time_yes = np.zeros(len(time))
    time_yes[np.logical_and(
        np.int_(time) >= int(Start),
        np.int_(time) <= int(End))] = 1
    time_start = time_yes[1:] - time_yes[:-1]
    time_end = time_yes[:-1] - time_yes[1:]

    # Set the startpoint
    if np.sum(time_start) > 0:
        Start_time = np.argwhere(time_start == 1)[0][0] + 1
    else:
        Start_time = 0

    # Set the endpoint
    if np.sum(time_end) > 0:
        End_time = np.argwhere(time_end == 1)[0][0] + 1
    else:
        End_time = len(Dates) + Start_time

    # Get the wanted variable from WaterPIX
    data = fh.variables[Var_name][Start_time:End_time, :, :]

    # Fill the WaterPIX veriable
    data_filled = np.dstack(np.ma.filled(data, np.nan))

    # Get WaterPIX projection
    proj = fh.variables['crs'].crs_wkt
    lon = fh.variables['longitude'][:]
    lat = fh.variables['latitude'][:]

    # Find WaterPIX raster parameters
    col = int(len(lon))
    row = int(len(lat))
    y_diff = (lat[0] - lat[-1]) / (row - 1)
    x_diff = (lon[0] - lon[-1]) / (col - 1)
    geo = tuple([
        lon[0] + 0.5 * x_diff, -x_diff, 0.0, lat[0] + 0.5 * y_diff, 0.0,
        -y_diff
    ])

    # Find example raster parameters
    geo_out, proj, size_X, size_Y = RC.Open_array_info(Example_dataset)

    # Create empty raster file
    Array_End = np.zeros([int(data_filled.shape[2]), size_Y, size_X])

    # Loop over time and add one time period at the time to end array
    for i in range(1, int(data_filled.shape[2])):

        # Create Memory file containing WaterPIX data
        mem_drv = gdal.GetDriverByName('MEM')
        dest = mem_drv.Create('', int(data_filled.shape[1]),
                              int(data_filled.shape[0]),
                              int(data_filled.shape[2]), gdal.GDT_Float32,
                              ['COMPRESS=LZW'])

        dest.SetGeoTransform(geo)
        srse = osr.SpatialReference()
        srse.SetWellKnownGeogCS("WGS84")
        dest.SetProjection(srse.ExportToWkt())
        dest.GetRasterBand(1).WriteArray(data_filled[:, :, i - 1])
        dest.GetRasterBand(1).SetNoDataValue(-9999)

        # reproject the WaterPIX raster to the example raster
        dest_out = RC.reproject_dataset_example(dest, Example_dataset)

        # Write the raster array to the end raster
        Array_End[i - 1, :, :] = dest_out.GetRasterBand(1).ReadAsArray()

    # Set nan value to 0
    Array_End[np.isnan(Array_End)] = 0

    return (Array_End)
コード例 #14
0
ファイル: main.py プロジェクト: gikon1/wa
def Calculate(Basin, P_Product, ET_Product, Moving_Averaging_Length, Startdate,
              Enddate, Simulation):
    """
    This functions is the main framework for calculating sheet 4.

    Parameters
    ----------
    Basin : str
        Name of the basin
    P_Product : str
        Name of the rainfall product that will be used
    ET_Product : str
        Name of the evapotranspiration product that will be used 
    Moving_Averiging_Length, int
        Defines the length of the moving average    
    Startdate : str
        Contains the start date of the model 'yyyy-mm-dd'    
    Enddate : str
        Contains the end date of the model 'yyyy-mm-dd' 
    Simulation : int
        Defines the simulation    
        
    """
    ######################### Import WA modules ###################################

    from wa.General import raster_conversions as RC
    from wa.General import data_conversions as DC
    import wa.Functions.Four as Four
    import wa.Functions.Start as Start
    import wa.Generator.Sheet4 as Generate

    ######################### Set General Parameters ##############################

    # Get environmental variable for the Home folder
    WA_env_paths = os.environ["WA_HOME"].split(';')
    Dir_Home = WA_env_paths[0]

    # Create the Basin folder
    Dir_Basin = os.path.join(Dir_Home, Basin)
    if not os.path.exists(Dir_Basin):
        os.makedirs(Dir_Basin)

    # Get the boundaries of the basin based on the shapefile of the watershed
    # Boundaries, Shape_file_name_shp = Start.Boundaries.Determine(Basin)
    Boundaries, Example_dataset = Start.Boundaries.Determine_LU_Based(Basin)

    #Set Startdate and Enddate for moving average
    Additional_Months = (Moving_Averaging_Length - 1) / 2
    Startdate_Moving_Average = pd.Timestamp(Startdate) - pd.DateOffset(
        months=Additional_Months)
    Enddate_Moving_Average = pd.Timestamp(Enddate) + pd.DateOffset(
        months=Additional_Months)
    Startdate_Moving_Average_String = '%d-%02d-%02d' % (
        Startdate_Moving_Average.year, Startdate_Moving_Average.month,
        Startdate_Moving_Average.day)
    Enddate_Moving_Average_String = '%d-%02d-%02d' % (
        Enddate_Moving_Average.year, Enddate_Moving_Average.month,
        Enddate_Moving_Average.day)

    ############################# Download Data ###################################

    # Download data
    Data_Path_P = Start.Download_Data.Precipitation(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']],
        Startdate_Moving_Average_String,
        Enddate_Moving_Average_String,
        P_Product,
        Daily='n')
    Data_Path_ET = Start.Download_Data.Evapotranspiration(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']], Startdate, Enddate,
        ET_Product)
    Data_Path_ETref = Start.Download_Data.ETreference(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']],
        Startdate_Moving_Average_String, Enddate_Moving_Average_String)
    Data_Path_GWF = Start.Download_Data.GWF(
        Dir_Basin, [Boundaries['Latmin'], Boundaries['Latmax']],
        [Boundaries['Lonmin'], Boundaries['Lonmax']])

    Data_Path_P_Monthly = os.path.join(Data_Path_P, 'Monthly')

    ###################### Save Data as netCDF files ##############################

    #___________________________________Land Use_______________________________

    # Get the data of LU and save as nc, This dataset is also used as reference for others
    LUdest = gdal.Open(Example_dataset)
    DataCube_LU = LUdest.GetRasterBand(1).ReadAsArray()

    Name_NC_LU = DC.Create_NC_name('LU', Simulation, Dir_Basin, 4)
    if not os.path.exists(Name_NC_LU):
        DC.Save_as_NC(Name_NC_LU, DataCube_LU, 'LU', Example_dataset)

    LUdest = None
    del DataCube_LU

    #______________________________Precipitation_______________________________

    # Define info for the nc files
    info = [
        'monthly', 'mm', ''.join([
            Startdate_Moving_Average_String[5:7],
            Startdate_Moving_Average_String[0:4]
        ]), ''.join([
            Enddate_Moving_Average_String[5:7],
            Enddate_Moving_Average_String[0:4]
        ])
    ]

    # Precipitation data
    Name_NC_P = DC.Create_NC_name('Prec', Simulation, Dir_Basin, 4, info)
    if not os.path.exists(Name_NC_P):

        # Get the data of Precipitation and save as nc
        DataCube_Prec = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_P_Monthly,
            Startdate_Moving_Average_String,
            Enddate_Moving_Average_String,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_P, DataCube_Prec, 'Prec', Example_dataset,
                      Startdate_Moving_Average_String,
                      Enddate_Moving_Average_String, 'monthly', 0.01)
        del DataCube_Prec

#_______________________Reference Evaporation______________________________

# Reference Evapotranspiration data
    Name_NC_ETref = DC.Create_NC_name('ETref', Simulation, Dir_Basin, 4, info)
    if not os.path.exists(Name_NC_ETref):

        # Get the data of Evaporation and save as nc
        DataCube_ETref = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ETref,
            Startdate_Moving_Average_String,
            Enddate_Moving_Average_String,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ETref, DataCube_ETref, 'ETref', Example_dataset,
                      Startdate_Moving_Average_String,
                      Enddate_Moving_Average_String, 'monthly', 0.01)
        del DataCube_ETref

    #_______________________________Evaporation________________________________
    info = [
        'monthly', 'mm', ''.join([Startdate[5:7], Startdate[0:4]]),
        ''.join([Enddate[5:7], Enddate[0:4]])
    ]

    # Evapotranspiration data
    Name_NC_ET = DC.Create_NC_name('ET', Simulation, Dir_Basin, 4, info)
    if not os.path.exists(Name_NC_ET):

        # Get the data of Evaporation and save as nc
        DataCube_ET = RC.Get3Darray_time_series_monthly(
            Dir_Basin,
            Data_Path_ET,
            Startdate,
            Enddate,
            Example_data=Example_dataset)
        DC.Save_as_NC(Name_NC_ET, DataCube_ET, 'ET', Example_dataset,
                      Startdate, Enddate, 'monthly', 0.01)
        del DataCube_ET

    #_____________________________________GWF__________________________________

    # GWF data
    Name_NC_GWF = DC.Create_NC_name('GWF_Fraction', Simulation, Dir_Basin, 4)
    if not os.path.exists(Name_NC_GWF):

        # Get the data of GWF, reproject and save as nc
        GWF_Filepath = os.path.join(Dir_Basin, Data_Path_GWF,
                                    "Gray_Water_Footprint_Fraction.tif")
        dest_GWF = RC.reproject_dataset_example(GWF_Filepath,
                                                Example_dataset,
                                                method=1)
        DataCube_GWF = dest_GWF.GetRasterBand(1).ReadAsArray()
        DC.Save_as_NC(Name_NC_GWF,
                      DataCube_GWF,
                      'GWF',
                      Example_dataset,
                      Scaling_factor=0.01)
        del DataCube_GWF

    ####################### Calculations Sheet 4 ##############################

    #____________ Evapotranspiration data split in ETblue and ETgreen ____________

    Name_NC_ETgreen = DC.Create_NC_name('ETgreen', Simulation, Dir_Basin, 4,
                                        info)
    Name_NC_ETblue = DC.Create_NC_name('ETblue', Simulation, Dir_Basin, 4,
                                       info)

    if not (os.path.exists(Name_NC_ETgreen) or os.path.exists(Name_NC_ETblue)):

        # Calculate Blue and Green ET
        DataCube_ETblue, DataCube_ETgreen = Four.SplitET.Blue_Green(
            Name_NC_ET, Name_NC_P, Name_NC_ETref, Startdate, Enddate,
            Additional_Months)

        # Save the ETblue and ETgreen data as NetCDF files
        DC.Save_as_NC(Name_NC_ETblue, DataCube_ETblue, 'ETblue',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        DC.Save_as_NC(Name_NC_ETgreen, DataCube_ETgreen, 'ETgreen',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)

        del DataCube_ETblue, DataCube_ETgreen

    #____________ Calculate non-consumend and Total supply maps by using fractions and consumed maps (blue ET) ____________

    Name_NC_Total_Supply = DC.Create_NC_name('TotSup', Simulation, Dir_Basin,
                                             4, info)
    Name_NC_Non_Consumed = DC.Create_NC_name('NonCon', Simulation, Dir_Basin,
                                             4, info)

    if not (os.path.exists(Name_NC_Total_Supply)
            or os.path.exists(Name_NC_Non_Consumed)):

        # Do the calculations
        DataCube_Total_Supply, DataCube_Non_Consumed = Four.Total_Supply.Fraction_Based(
            Name_NC_ETblue, Name_NC_LU, Startdate, Enddate)

        # Save the Total Supply and non consumed data as NetCDF files
        DC.Save_as_NC(Name_NC_Total_Supply, DataCube_Total_Supply, 'TotSup',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        DC.Save_as_NC(Name_NC_Non_Consumed, DataCube_Non_Consumed, 'NonCon',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_Total_Supply, DataCube_Non_Consumed

    #____________ Apply fractions over total supply to calculate gw and sw supply ____________

    Name_NC_Total_Supply_SW = DC.Create_NC_name('TotSupSW', Simulation,
                                                Dir_Basin, 4, info)
    Name_NC_Total_Supply_GW = DC.Create_NC_name('TotSupGW', Simulation,
                                                Dir_Basin, 4, info)

    if not (os.path.exists(Name_NC_Total_Supply_SW)
            or os.path.exists(Name_NC_Total_Supply_GW)):

        # Do the calculations
        DataCube_Total_Supply_SW, DataCube_Total_Supply_GW = Four.SplitGW_SW_Supply.Fraction_Based(
            Name_NC_Total_Supply, Name_NC_LU, Startdate, Enddate)

        # Save the Total Supply surface water and Total Supply ground water data as NetCDF files
        DC.Save_as_NC(Name_NC_Total_Supply_SW, DataCube_Total_Supply_SW,
                      'TotSupSW', Example_dataset, Startdate, Enddate,
                      'monthly', 0.01)
        DC.Save_as_NC(Name_NC_Total_Supply_GW, DataCube_Total_Supply_GW,
                      'TotSupGW', Example_dataset, Startdate, Enddate,
                      'monthly', 0.01)
        del DataCube_Total_Supply_SW, DataCube_Total_Supply_GW

    #____________ Apply gray water footprint fractions to calculated non recoverable flow based on the non consumed flow ____________

    Name_NC_NonRecovableFlow = DC.Create_NC_name('NonRecov', Simulation,
                                                 Dir_Basin, 4, info)
    Name_NC_RecovableFlow = DC.Create_NC_name('Recov', Simulation, Dir_Basin,
                                              4, info)

    if not (os.path.exists(Name_NC_NonRecovableFlow)
            or os.path.exists(Name_NC_RecovableFlow)):

        # Calculate the non recovable flow and recovable flow by using Grey Water Footprint values
        DataCube_NonRecovableFlow, Datacube_RecovableFlow = Four.SplitNonConsumed_NonRecov.GWF_Based(
            Name_NC_Non_Consumed, Name_NC_GWF, Name_NC_LU, Startdate, Enddate)

        # Get the data of Evaporation and save as nc
        DC.Save_as_NC(Name_NC_NonRecovableFlow, DataCube_NonRecovableFlow,
                      'NonRecov', Example_dataset, Startdate, Enddate,
                      'monthly', 0.01)
        DC.Save_as_NC(Name_NC_RecovableFlow, Datacube_RecovableFlow, 'Recov',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_NonRecovableFlow, Datacube_RecovableFlow

    #____________Apply fractions to calculate the non recovarable SW/GW and recovarable SW/GW ____________

    # 1. Non recovarable flow
    Name_NC_NonRecovableFlow_Return_GW = DC.Create_NC_name(
        'NonRecov_Return_GW', Simulation, Dir_Basin, 4, info)
    Name_NC_NonRecovableFlow_Return_SW = DC.Create_NC_name(
        'NonRecov_Return_SW', Simulation, Dir_Basin, 4, info)

    if not (os.path.exists(Name_NC_NonRecovableFlow_Return_GW)
            or os.path.exists(Name_NC_NonRecovableFlow_Return_SW)):

        # Calculate the non recovable return flow to ground and surface water
        DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(
            Name_NC_NonRecovableFlow, Name_NC_LU, Startdate, Enddate)

        # Get the data of Evaporation and save as nc
        DC.Save_as_NC(Name_NC_NonRecovableFlow_Return_GW,
                      DataCube_NonRecovableFlow_Return_GW, 'NonRecovReturnGW',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        DC.Save_as_NC(Name_NC_NonRecovableFlow_Return_SW,
                      Datacube_NonRecovableFlow_Return_SW, 'NonRecovReturnSW',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_NonRecovableFlow_Return_GW, Datacube_NonRecovableFlow_Return_SW

    # 2. Recovarable flow
    Name_NC_RecovableFlow_Return_GW = DC.Create_NC_name(
        'Recov_Return_GW', Simulation, Dir_Basin, 4, info)
    Name_NC_RecovableFlow_Return_SW = DC.Create_NC_name(
        'Recov_Return_SW', Simulation, Dir_Basin, 4, info)

    if not (os.path.exists(Name_NC_RecovableFlow_Return_GW)
            or os.path.exists(Name_NC_RecovableFlow_Return_SW)):

        # Calculate the non recovable return flow to ground and surface water
        DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW = Four.SplitGW_SW_Return.Fraction_Based(
            Name_NC_RecovableFlow, Name_NC_LU, Startdate, Enddate)

        # Get the data of Evaporation and save as nc
        DC.Save_as_NC(Name_NC_RecovableFlow_Return_GW,
                      DataCube_RecovableFlow_Return_GW, 'NonRecovReturnGW',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        DC.Save_as_NC(Name_NC_RecovableFlow_Return_SW,
                      Datacube_RecovableFlow_Return_SW, 'NonRecovReturnSW',
                      Example_dataset, Startdate, Enddate, 'monthly', 0.01)
        del DataCube_RecovableFlow_Return_GW, Datacube_RecovableFlow_Return_SW

    ############################ Create CSV 4 #################################

    Dir_Basin_CSV, Unit_front = Generate.CSV.Create(
        Dir_Basin, Simulation, Basin, Startdate, Enddate, Name_NC_LU,
        Name_NC_Total_Supply_GW, Name_NC_Total_Supply_SW, Name_NC_Non_Consumed,
        Name_NC_ETblue, Name_NC_RecovableFlow_Return_GW,
        Name_NC_RecovableFlow_Return_SW, Name_NC_NonRecovableFlow_Return_GW,
        Name_NC_NonRecovableFlow_Return_SW)

    ############################ Create Sheet 4 ###############################

    Generate.PDF.Create(Dir_Basin, Basin, Simulation, Dir_Basin_CSV,
                        Unit_front)

    return ()