コード例 #1
0
def ainsliefull_1angle(layout_x, layout_y, wind_speed, angle, rotor_radius, TI):
    layout_xD = []
    layout_yD = []

    D = 2.0 * rotor_radius  # Diameter

    for x in range(len(layout_x)):
        layout_xD.append(layout_x[x] / D)

    for x in range(len(layout_y)):
        layout_yD.append(layout_y[x] / D)

    nt = len(layout_y)
    U0 = wind_speed  # Free stream wind speed
    angle3 = angle + 180.0
    wake_deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
    distance = [[0.0 for _ in range(2)] for _ in range(nt)]
    total_deficit = [0.0 for _ in range(nt)]
    U = [U0 for _ in range(nt)]
    U = U
    TI *= 100.0

    for tur in range(nt):
        distance[tur] = [distance_to_front(layout_xD[tur], layout_yD[tur], angle), tur]
    distance.sort()

    for turbine in range(nt):

        for num in range(turbine):
            total_deficit[distance[turbine][1]] += wake_deficit_matrix[distance[turbine][1]][
                                                       distance[num][1]] ** 2.0
        total_deficit[distance[turbine][1]] = sqrt(total_deficit[distance[turbine][1]])
        U[distance[turbine][1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])
        parallel_distance = [0.0 for _ in range(nt)]
        perpendicular_distance = [0.0 for _ in range(nt)]

        for i in range(turbine + 1, nt):
            parallel_distance[distance[i][1]] = determine_front(angle3, layout_xD[distance[turbine][1]],
                                                                layout_yD[distance[turbine][1]],
                                                                layout_xD[distance[i][1]],
                                                                layout_yD[distance[i][1]])
            perpendicular_distance[distance[i][1]] = wake.crosswind_distance(radians(angle3),
                                                                             layout_xD[distance[turbine][1]],
                                                                             layout_yD[distance[turbine][1]],
                                                                             layout_xD[distance[i][1]],
                                                                             layout_yD[distance[i][1]])

            if perpendicular_distance[distance[i][1]] <= 2.0 and parallel_distance[
                distance[i][1]] > 0.0:  ## 1.7 gives same results as a bigger distance, many times faster.

                wake_deficit_matrix[distance[i][1]][distance[turbine][1]] = ainslie_full(
                    Ct(U[distance[turbine][1]]), U[distance[turbine][1]],
                    parallel_distance[distance[i][1]], perpendicular_distance[distance[i][1]], TI)
            else:
                wake_deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

    # print angle, sum([power(U[i]) for i in range(len(U))])
    return U
コード例 #2
0
def jensen_1angle(layout_x, layout_y, wind_speed, angle, rotor_radius, k):
    U0 = wind_speed  # Free stream wind speed

    nt = len(layout_y)  # Number of turbines ## Length of layout list

    r0 = rotor_radius  # Turbine rotor radius
    # angle2 = - 270.0 - angle  # To read windroses where N is 0 and E is 90.
    angle3 = angle + 180.0
    deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
    proportion = [[0.0 for _ in range(nt)] for _ in range(nt)]
    distance = [[0.0 for _ in range(2)] for _ in range(nt)]
    U = [U0 for _ in range(nt)]
    total_deficit = [0.0 for _ in range(nt)]

    def loop1(i):

        Parallel(n_jobs=-1)(delayed(loop2)(i) for i in range(turbine + 1, nt))

    def loop2(i):
        determ = wake.determine_if_in_wake(layout_x[distance[turbine][1]],
                                           layout_y[distance[turbine][1]],
                                           layout_x[distance[i][1]],
                                           layout_y[distance[i][1]], k, r0,
                                           angle3)
        proportion[distance[turbine][1]][distance[i][1]] = determ[0]

        if proportion[distance[turbine][1]][distance[i][1]] != 0.0:
            deficit_matrix[distance[i][1]][distance[turbine][1]] = proportion[
                distance[turbine][1]][distance[i][1]] * wake.wake_deficit(
                    Ct(U[distance[turbine][1]]), k, determ[1], r0)
        else:
            deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

        return deficit_matrix[distance[i][1]][distance[turbine][1]]

    for tur in range(nt):
        distance[tur] = [
            distance_to_front(layout_x[tur], layout_y[tur], angle), tur
        ]
    distance.sort()

    deficit_matrix[distance[i][1]][distance[turbine][1]] = Parallel(n_jobs=-1)(
        delayed(loop1)(i) for i in range(turbine + 1, nt))

    for turbine in range(nt):

        for num in range(turbine):
            total_deficit[distance[turbine][1]] += deficit_matrix[
                distance[turbine][1]][distance[num][1]]**2.0
        total_deficit[distance[turbine][1]] = sqrt(
            total_deficit[distance[turbine][1]])
        U[distance[turbine][1]] = U0 * (1.0 -
                                        total_deficit[distance[turbine][1]])

    return U
コード例 #3
0
    def solve_nonlinear(self, params, unknowns, resids):

        U0 = params['mean_ambient_wind_speed']  # Free stream wind speed
        layout_x = params['layout_x']
        layout_y = params['layout_y']
        k = params['k'] = 0.04  # Decay constant
        r0 = params['rotor_radius']  # Turbine rotor radius
        angle = params['wind_direction']
        nt = num_turb
        # angle2 = - 270.0 - angle  # To read windroses where N is 0 and E is 90.
        angle3 = angle + 180.0
        deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
        proportion = [[0.0 for _ in range(nt)] for _ in range(nt)]
        distance = [[0.0 for _ in range(2)] for _ in range(nt)]
        U = [U0 for _ in range(nt)]
        total_deficit = [0.0 for _ in range(nt)]

        for tur in range(nt):
            distance[tur] = [
                distance_to_front(layout_x[tur], layout_y[tur], angle), tur
            ]
        distance.sort()

        for turbine in range(nt):

            for num in range(turbine):
                total_deficit[distance[turbine][1]] += deficit_matrix[
                    distance[turbine][1]][distance[num][1]]**2.0
            total_deficit[distance[turbine][1]] = sqrt(
                total_deficit[distance[turbine][1]])
            U[distance[turbine]
              [1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])

            for i in range(turbine + 1, nt):

                determ = wake.determine_if_in_wake(
                    layout_x[distance[turbine][1]],
                    layout_y[distance[turbine][1]], layout_x[distance[i][1]],
                    layout_y[distance[i][1]], k, r0, angle3)
                proportion[distance[turbine][1]][distance[i][1]] = determ[0]

                if proportion[distance[turbine][1]][distance[i][1]] != 0.0:
                    deficit_matrix[distance[i][1]][distance[turbine][
                        1]] = proportion[distance[turbine][1]][
                            distance[i][1]] * wake.wake_deficit(
                                Ct(U[distance[turbine][1]]), k, determ[1], r0)
                else:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

        # return [list(_) for _ in zip(
        #     zip([x for (y, x) in sorted(zip([item[0] for item in distance], layout_x))], [x for (y, x) in sorted(
        #         zip([item[0] for item in distance], layout_y))]), U)]

        unknowns['U'] = array(U)
コード例 #4
0
    def solve_nonlinear(self, params, unknowns, resids):

        D = 2.0 * params['rotor_radius']  # Diameter

        layout_x = params['layout_x']
        layout_y = params['layout_y']
        layout_xD = array(layout_x) / D
        layout_yD = array(layout_y) / D

        U0 = params['mean_ambient_wind_speed']  # Free stream wind speed
        angle = params['wind_direction']
        nt = num_turb
        angle3 = angle + 180.0
        wake_deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
        distance = [[0.0 for _ in range(2)] for _ in range(nt)]
        total_deficit = [0.0 for _ in range(nt)]
        U = [U0 for _ in range(nt)]

        for tur in range(nt):
            distance[tur] = [distance_to_front(layout_xD[tur], layout_yD[tur], angle), tur]

        distance.sort()

        for turbine in range(nt):
            for num in range(turbine):
                total_deficit[distance[turbine][1]] += wake_deficit_matrix[distance[turbine][1]][
                                                           distance[num][1]] ** 2.0
            total_deficit[distance[turbine][1]] = sqrt(total_deficit[distance[turbine][1]])
            U[distance[turbine][1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])
            parallel_distance = [0.0 for _ in range(nt)]
            perpendicular_distance = [0.0 for _ in range(nt)]

            for i in range(turbine + 1, nt):
                parallel_distance[distance[i][1]] = determine_front(angle3, layout_xD[distance[turbine][1]],
                                                                    layout_yD[distance[turbine][1]],
                                                                    layout_xD[distance[i][1]],
                                                                    layout_yD[distance[i][1]])
                perpendicular_distance[distance[i][1]] = wake.crosswind_distance(radians(angle3),
                                                                                 layout_xD[distance[turbine][1]],
                                                                                 layout_yD[distance[turbine][1]],
                                                                                 layout_xD[distance[i][1]],
                                                                                 layout_yD[distance[i][1]])

                if perpendicular_distance[distance[i][1]] <= 1.7 and parallel_distance[
                    distance[i][1]] > 0.0:  ## 1.7 gives same results as a bigger distance, many times faster.

                    wake_deficit_matrix[distance[i][1]][distance[turbine][1]] = ainslie(
                        Ct(U[distance[turbine][1]]), U[distance[turbine][1]],
                        parallel_distance[distance[i][1]], perpendicular_distance[distance[i][1]], params['TI'])
                else:
                    wake_deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

        unknowns['U'] = array(U)
コード例 #5
0
    def solve_nonlinear(self, params, unknowns, resids):
        layout_x = params['layout_x']
        layout_y = params['layout_y']
        angle = params['angle']
        distance = [[] for _ in range(nt)]

        for tur in range(nt):
            distance[tur] = [distance_to_front(layout_x[tur], layout_y[tur], angle), tur, layout_x[tur], layout_y[tur]]
        distance.sort()

        unknowns['turbine_index'] = array([x[1] for x in distance])
        unknowns['ordered_layout_x'] = array([x[2] for x in distance])
        unknowns['ordered_layout_y'] = array([x[3] for x in distance])
コード例 #6
0
    def solve_nonlinear(self, params, unknowns, resids):
        layout_x = params["layout_x"]
        layout_y = params["layout_y"]
        angle = params["angle"]
        distance = [[] for _ in range(nt)]

        for tur in range(nt):
            distance[tur] = [distance_to_front(layout_x[tur], layout_y[tur], angle), tur, layout_x[tur], layout_y[tur]]
        distance.sort()

        unknowns["turbine_index"] = array([x[1] for x in distance])
        unknowns["ordered_layout_x"] = array([x[2] for x in distance])
        unknowns["ordered_layout_y"] = array([x[3] for x in distance])
コード例 #7
0
    def solve_nonlinear(self, params, unknowns, resids):

        U0 = params['mean_ambient_wind_speed']  # Free stream wind speed
        layout_x = params['layout_x']
        layout_y = params['layout_y']
        k = params['k'] = 0.04  # Decay constant
        r0 = params['rotor_radius']  # Turbine rotor radius
        angle = params['wind_direction']
        nt = num_turb
        # angle2 = - 270.0 - angle  # To read windroses where N is 0 and E is 90.
        angle3 = angle + 180.0
        deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
        proportion = [[0.0 for _ in range(nt)] for _ in range(nt)]
        distance = [[0.0 for _ in range(2)] for _ in range(nt)]
        U = [U0 for _ in range(nt)]
        total_deficit = [0.0 for _ in range(nt)]

        for tur in range(nt):
            distance[tur] = [distance_to_front(layout_x[tur], layout_y[tur], angle), tur]
        distance.sort()

        for turbine in range(nt):

            for num in range(turbine):
                total_deficit[distance[turbine][1]] += deficit_matrix[distance[turbine][1]][distance[num][1]] ** 2.0
            total_deficit[distance[turbine][1]] = sqrt(total_deficit[distance[turbine][1]])
            U[distance[turbine][1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])

            for i in range(turbine + 1, nt):

                determ = wake.determine_if_in_wake(layout_x[distance[turbine][1]],
                                                   layout_y[distance[turbine][1]],
                                                   layout_x[distance[i][1]], layout_y[distance[i][1]], k,
                                                   r0, angle3)
                proportion[distance[turbine][1]][distance[i][1]] = determ[0]

                if proportion[distance[turbine][1]][distance[i][1]] != 0.0:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = proportion[distance[turbine][1]][
                                                                               distance[i][1]] * wake.wake_deficit(
                        Ct(U[distance[turbine][1]]), k, determ[1], r0)
                else:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

        # return [list(_) for _ in zip(
        #     zip([x for (y, x) in sorted(zip([item[0] for item in distance], layout_x))], [x for (y, x) in sorted(
        #         zip([item[0] for item in distance], layout_y))]), U)]

        unknowns['U'] = array(U)
コード例 #8
0
def jensen_1angle(layout_x, layout_y, wind_speed, angle, rotor_radius, k):
    U0 = wind_speed  # Free stream wind speed

    nt = len(layout_y)  # Number of turbines ## Length of layout list

    r0 = rotor_radius  # Turbine rotor radius
    # angle2 = - 270.0 - angle  # To read windroses where N is 0 and E is 90.
    angle3 = angle + 180.0
    deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
    proportion = [[0.0 for _ in range(nt)] for _ in range(nt)]
    distance = [[0.0 for _ in range(2)] for _ in range(nt)]
    U = [U0 for _ in range(nt)]
    total_deficit = [0.0 for _ in range(nt)]

    for tur in range(nt):
        distance[tur] = [distance_to_front(layout_x[tur], layout_y[tur], angle), tur]
    distance.sort()

    for turbine in range(nt):

        for num in range(turbine):
            total_deficit[distance[turbine][1]] += deficit_matrix[distance[turbine][1]][distance[num][1]] ** 2.0
        total_deficit[distance[turbine][1]] = sqrt(total_deficit[distance[turbine][1]])
        U[distance[turbine][1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])

        for i in range(turbine + 1, nt):

            determ = wake.determine_if_in_wake(layout_x[distance[turbine][1]],
                                               layout_y[distance[turbine][1]],
                                               layout_x[distance[i][1]], layout_y[distance[i][1]], k,
                                               r0, angle3)
            proportion[distance[turbine][1]][distance[i][1]] = determ[0]

            if proportion[distance[turbine][1]][distance[i][1]] != 0.0:
                deficit_matrix[distance[i][1]][distance[turbine][1]] = proportion[distance[turbine][1]][
                                                                           distance[i][1]] * wake.wake_deficit(
                    Ct(U[distance[turbine][1]]), k, determ[1], r0)
            else:
                deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

    return U
コード例 #9
0
def ainslie_1angle(layout_x, layout_y, wind_speed, angle, rotor_radius, TI):

    layout_xD = []
    layout_yD = []

    D = 2.0 * rotor_radius  # Diameter

    for x in range(len(layout_x)):
        layout_xD.append(layout_x[x] / D)

    for x in range(len(layout_y)):
        layout_yD.append(layout_y[x] / D)

    nt = len(layout_y)
    U0 = wind_speed  # Free stream wind speed
    angle3 = angle + 180.0
    wake_deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
    distance = [[0.0 for _ in range(2)] for _ in range(nt)]
    total_deficit = [0.0 for _ in range(nt)]
    U = [U0 for _ in range(nt)]
    U = U
    TI *= 100.0

    for tur in range(nt):
        distance[tur] = [
            distance_to_front(layout_xD[tur], layout_yD[tur], angle), tur
        ]
    distance.sort()

    for turbine in range(nt):
        for num in range(turbine):
            total_deficit[distance[turbine][1]] += wake_deficit_matrix[
                distance[turbine][1]][distance[num][1]]**2.0
        total_deficit[distance[turbine][1]] = sqrt(
            total_deficit[distance[turbine][1]])
        U[distance[turbine][1]] = U0 * (1.0 -
                                        total_deficit[distance[turbine][1]])
        parallel_distance = [0.0 for _ in range(nt)]
        perpendicular_distance = [0.0 for _ in range(nt)]

        for i in range(turbine + 1, nt):
            parallel_distance[distance[i][1]] = determine_front(
                angle3, layout_xD[distance[turbine][1]],
                layout_yD[distance[turbine][1]], layout_xD[distance[i][1]],
                layout_yD[distance[i][1]])
            perpendicular_distance[distance[i][1]] = wake.crosswind_distance(
                radians(angle3), layout_xD[distance[turbine][1]],
                layout_yD[distance[turbine][1]], layout_xD[distance[i][1]],
                layout_yD[distance[i][1]])

            if perpendicular_distance[
                    distance[i]
                [1]] <= 1.7 and parallel_distance[distance[i][
                    1]] > 0.0:  ## 1.7 gives same results as a bigger distance, many times faster.

                wake_deficit_matrix[distance[i][1]][
                    distance[turbine][1]] = ainslie(
                        Ct(U[distance[turbine][1]]), U[distance[turbine][1]],
                        parallel_distance[distance[i][1]],
                        perpendicular_distance[distance[i][1]], TI)
            else:
                wake_deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

    return U
コード例 #10
0
def larsen_1angle(layout_x, layout_y, wind_speed, angle, rotor_radius,
                  hub_height, TI):

    U0 = wind_speed

    r0 = rotor_radius
    nt = len(layout_y)  # Number of turbines
    D = 2.0 * r0
    A = pi * r0**2.0
    H = hub_height  # Hub height
    ia = TI  # Ambient turbulence intensity according to vanluvanee. 8% on average

    def deff(u1):
        return D * sqrt(
            (1.0 + sqrt(1.0 - Ct(u1))) / (2.0 * sqrt(1.0 - Ct(u1))))

    rnb = max(1.08 * D, 1.08 * D + 21.7 * D * (ia - 0.05))
    r95 = 0.5 * (rnb + min(H, rnb))

    def x0(u2):
        return 9.5 * D / ((2.0 * r95 / deff(u2))**3.0 - 1.0)

    def c1(u3):
        return (deff(u3) / 2.0)**(5.0 / 2.0) * (105.0 / 2.0 / pi)**(
            -1.0 / 2.0) * (Ct(u3) * A * x0(u3))**(-5.0 / 6.0
                                                  )  # Prandtl mixing length

    angle3 = angle + 180.0
    deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
    distance = [[0.0 for _ in range(2)] for _ in range(nt)]
    U = [U0 for _ in range(nt)]
    total_deficit = [0.0 for _ in range(nt)]

    for tur in range(nt):
        distance[tur] = [
            distance_to_front(layout_x[tur], layout_y[tur], angle), tur
        ]
    distance.sort()

    for turbine in range(nt):
        for num in range(turbine):
            total_deficit[distance[turbine][1]] += deficit_matrix[
                distance[turbine][1]][distance[num][1]]**2.0
        total_deficit[distance[turbine][1]] = sqrt(
            total_deficit[distance[turbine][1]])
        U[distance[turbine][1]] = U0 * (1.0 -
                                        total_deficit[distance[turbine][1]])
        flag = [False for _ in range(nt)]
        proportion = [0.0 for _ in range(nt)]
        perpendicular_distance = [0.0 for _ in range(nt)]
        parallel_distance = [0.0 for _ in range(nt)]
        for i in range(turbine + 1, nt):
            proportion[distance[i][1]], flag[distance[i][1]], perpendicular_distance[distance[i][1]], \
            parallel_distance[distance[i][1]] = wake_larsen.determine_if_in_wake_larsen(
                layout_x[distance[turbine][1]],
                layout_y[distance[turbine][1]],
                layout_x[distance[i][1]],
                layout_y[distance[i][1]], A,
                c1(U[distance[turbine][1]]),
                Ct(U[distance[turbine][1]]), angle3,
                r0, x0(U[distance[turbine][1]]))
            if parallel_distance[distance[i][1]] > 0.0:
                if proportion[distance[i][1]] != 0.0:
                    deficit_matrix[distance[i][1]][
                        distance[turbine][1]] = proportion[
                            distance[i][1]] * wake_larsen.wake_deficit(
                                U[distance[turbine][1]],
                                Ct(U[distance[turbine][1]]), A,
                                parallel_distance[distance[i][1]] +
                                x0(U[distance[turbine][1]]),
                                perpendicular_distance[distance[i][1]],
                                c1(U[distance[turbine][1]]))
                else:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0
            else:
                deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

    return U
コード例 #11
0
    def solve_nonlinear(self, params, unknowns, resids):

        U0 = params['mean_ambient_wind_speed']
        layout_y = params['layout_y']
        layout_x = params['layout_x']
        angle = params['wind_direction']
        nt = num_turb
        r0 = params['rotor_radius']  # Turbine rotor radius
        D = 2.0 * r0
        A = pi * r0**2.0
        ia = params[
            'TI']  # Ambient turbulence intensity according to vanluvanee. 8% on average
        H = params['hub_height']

        def deff(U0):
            return D * sqrt(
                (1.0 + sqrt(1.0 - Ct(U0))) / (2.0 * sqrt(1.0 - Ct(U0))))

        rnb = max(1.08 * D, 1.08 * D + 21.7 * D * (ia - 0.05))
        r95 = 0.5 * (rnb + min(H, rnb))

        def x0(U0):
            return 9.5 * D / ((2.0 * r95 / deff(U0))**3.0 - 1.0)

        def c1(U0):
            return (deff(U0) / 2.0)**(5.0 / 2.0) * (105.0 / 2.0 / pi)**(
                -1.0 / 2.0) * (Ct(U0) * A * x0(U0))**(
                    -5.0 / 6.0)  # Prandtl mixing length

        angle3 = angle + 180.0
        deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
        distance = [[0.0 for _ in range(2)] for _ in range(nt)]
        U = [U0 for _ in range(nt)]
        total_deficit = [0.0 for _ in range(nt)]

        for tur in range(nt):
            distance[tur] = [
                distance_to_front(layout_x[tur], layout_y[tur], angle), tur
            ]
        distance.sort()

        for turbine in range(nt):
            for num in range(turbine):
                total_deficit[distance[turbine][1]] += deficit_matrix[
                    distance[turbine][1]][distance[num][1]]**2.0

            total_deficit[distance[turbine][1]] = sqrt(
                total_deficit[distance[turbine][1]])
            U[distance[turbine]
              [1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])

            flag = [False for _ in range(nt)]
            proportion = [0.0 for _ in range(nt)]
            perpendicular_distance = [0.0 for _ in range(nt)]
            parallel_distance = [0.0 for _ in range(nt)]

            for i in range(turbine + 1, nt):
                proportion[distance[i][1]], flag[distance[i][1]], perpendicular_distance[distance[i][1]], \
                parallel_distance[distance[i][1]] = wake_larsen.determine_if_in_wake_larsen(
                    layout_x[distance[turbine][1]],
                    layout_y[distance[turbine][1]],
                    layout_x[distance[i][1]],
                    layout_y[distance[i][1]], A,
                    c1(U[distance[turbine][1]]),
                    Ct(U[distance[turbine][1]]), angle3,
                    r0, x0(U[distance[turbine][1]]))

                if parallel_distance[distance[i][1]] > 0.0:
                    if proportion[distance[i][1]] != 0.0:
                        deficit_matrix[distance[i][1]][
                            distance[turbine][1]] = proportion[
                                distance[i][1]] * wake_larsen.wake_deficit(
                                    U[distance[turbine][1]],
                                    Ct(U[distance[turbine][1]]), A,
                                    parallel_distance[distance[i][1]] +
                                    x0(U[distance[turbine][1]]),
                                    perpendicular_distance[distance[i][1]],
                                    c1(U[distance[turbine][1]]))
                    else:
                        deficit_matrix[distance[i][1]][distance[turbine]
                                                       [1]] = 0.0
                else:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

        unknowns['U'] = array(U)
コード例 #12
0
def larsen_1angle(layout_x, layout_y, wind_speed, angle, rotor_radius, hub_height, TI):

    U0 = wind_speed
    
    r0 = rotor_radius
    nt = len(layout_y)  # Number of turbines
    D = 2.0 * r0
    A = pi * r0 ** 2.0
    H = hub_height  # Hub height
    ia = TI  # Ambient turbulence intensity according to vanluvanee. 8% on average

    def deff(u1):
        return D * sqrt((1.0 + sqrt(1.0 - Ct(u1))) / (2.0 * sqrt(1.0 - Ct(u1))))

    rnb = max(1.08 * D, 1.08 * D + 21.7 * D * (ia - 0.05))
    r95 = 0.5 * (rnb + min(H, rnb))

    def x0(u2):
        return 9.5 * D / ((2.0 * r95 / deff(u2)) ** 3.0 - 1.0)

    def c1(u3):
        return (deff(u3) / 2.0) ** (5.0 / 2.0) * (105.0 / 2.0 / pi) ** (- 1.0 / 2.0) * (Ct(u3) * A * x0(u3)) ** (
            - 5.0 / 6.0)  # Prandtl mixing length

    angle3 = angle + 180.0
    deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
    distance = [[0.0 for _ in range(2)] for _ in range(nt)]
    U = [U0 for _ in range(nt)]
    total_deficit = [0.0 for _ in range(nt)]

    for tur in range(nt):
        distance[tur] = [distance_to_front(layout_x[tur], layout_y[tur], angle), tur]
    distance.sort()

    for turbine in range(nt):
        for num in range(turbine):
            total_deficit[distance[turbine][1]] += deficit_matrix[distance[turbine][1]][distance[num][1]] ** 2.0
        total_deficit[distance[turbine][1]] = sqrt(total_deficit[distance[turbine][1]])
        U[distance[turbine][1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])
        flag = [False for _ in range(nt)]
        proportion = [0.0 for _ in range(nt)]
        perpendicular_distance = [0.0 for _ in range(nt)]
        parallel_distance = [0.0 for _ in range(nt)]
        for i in range(turbine + 1, nt):
            proportion[distance[i][1]], flag[distance[i][1]], perpendicular_distance[distance[i][1]], \
            parallel_distance[distance[i][1]] = wake_larsen.determine_if_in_wake_larsen(
                layout_x[distance[turbine][1]],
                layout_y[distance[turbine][1]],
                layout_x[distance[i][1]],
                layout_y[distance[i][1]], A,
                c1(U[distance[turbine][1]]),
                Ct(U[distance[turbine][1]]), angle3,
                r0, x0(U[distance[turbine][1]]))
            if parallel_distance[
                distance[i][1]] > 0.0:
                if proportion[distance[i][1]] != 0.0:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = proportion[
                                                                               distance[i][
                                                                                   1]] * wake_larsen.wake_deficit(
                        U[distance[turbine][1]], Ct(U[distance[turbine][1]]), A,
                        parallel_distance[distance[i][1]] + x0(U[distance[turbine][1]]),
                        perpendicular_distance[distance[i][1]], c1(U[distance[turbine][1]]))
                else:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0
            else:
                deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

    return U
コード例 #13
0
    def solve_nonlinear(self, params, unknowns, resids):

        U0 = params['mean_ambient_wind_speed']
        layout_y = params['layout_y']
        layout_x = params['layout_x']
        angle = params['wind_direction']
        nt = num_turb
        r0 = params['rotor_radius']  # Turbine rotor radius
        D = 2.0 * r0
        A = pi * r0 ** 2.0
        ia = params['TI']  # Ambient turbulence intensity according to vanluvanee. 8% on average
        H = params['hub_height']

        def deff(U0):
            return D * sqrt((1.0 + sqrt(1.0 - Ct(U0))) / (2.0 * sqrt(1.0 - Ct(U0))))

        rnb = max(1.08 * D, 1.08 * D + 21.7 * D * (ia - 0.05))
        r95 = 0.5 * (rnb + min(H, rnb))

        def x0(U0):
            return 9.5 * D / ((2.0 * r95 / deff(U0)) ** 3.0 - 1.0)

        def c1(U0):
            return (deff(U0) / 2.0) ** (5.0 / 2.0) * (105.0 / 2.0 / pi) ** (- 1.0 / 2.0) * (Ct(U0) * A * x0(U0)) ** (
                - 5.0 / 6.0)  # Prandtl mixing length

        angle3 = angle + 180.0
        deficit_matrix = [[0.0 for _ in range(nt)] for _ in range(nt)]
        distance = [[0.0 for _ in range(2)] for _ in range(nt)]
        U = [U0 for _ in range(nt)]
        total_deficit = [0.0 for _ in range(nt)]

        for tur in range(nt):
            distance[tur] = [distance_to_front(layout_x[tur], layout_y[tur], angle), tur]
        distance.sort()

        for turbine in range(nt):
            for num in range(turbine):
                total_deficit[distance[turbine][1]] += deficit_matrix[distance[turbine][1]][distance[num][1]] ** 2.0

            total_deficit[distance[turbine][1]] = sqrt(total_deficit[distance[turbine][1]])
            U[distance[turbine][1]] = U0 * (1.0 - total_deficit[distance[turbine][1]])

            flag = [False for _ in range(nt)]
            proportion = [0.0 for _ in range(nt)]
            perpendicular_distance = [0.0 for _ in range(nt)]
            parallel_distance = [0.0 for _ in range(nt)]

            for i in range(turbine + 1, nt):
                proportion[distance[i][1]], flag[distance[i][1]], perpendicular_distance[distance[i][1]], \
                parallel_distance[distance[i][1]] = wake_larsen.determine_if_in_wake_larsen(
                    layout_x[distance[turbine][1]],
                    layout_y[distance[turbine][1]],
                    layout_x[distance[i][1]],
                    layout_y[distance[i][1]], A,
                    c1(U[distance[turbine][1]]),
                    Ct(U[distance[turbine][1]]), angle3,
                    r0, x0(U[distance[turbine][1]]))

                if parallel_distance[
                    distance[i][1]] > 0.0:
                    if proportion[distance[i][1]] != 0.0:
                        deficit_matrix[distance[i][1]][distance[turbine][1]] = proportion[
                                                                                   distance[i][
                                                                                       1]] * wake_larsen.wake_deficit(
                            U[distance[turbine][1]], Ct(U[distance[turbine][1]]), A,
                            parallel_distance[distance[i][1]] + x0(U[distance[turbine][1]]),
                            perpendicular_distance[distance[i][1]], c1(U[distance[turbine][1]]))
                    else:
                        deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0
                else:
                    deficit_matrix[distance[i][1]][distance[turbine][1]] = 0.0

        unknowns['U'] = array(U)