コード例 #1
0
class IndexMap(DiGraph):
    def __init__(self, generators=None, regions=None, transitions=None, debug=False):
        """
        Inputs:
        
            generators -- a matix representing mapping of generators in
                rows onto generators in columns.
                
            regions -- a dictionary of lists representing generators
            per region.

            transitions -- An adjacency matrix representing the
            transitions between regions in phase space.
            
            debug (optional) = a boolean representing if debug
                statements should be printed
        """
        self.generators = generators
        self.regions = regions
        self.transitions = DiGraph()
        self.transitions.from_numpy_matrix( transitions )
        self.library = UnverifiedLibrary()
        self.debug = debug

        # Graph that will store the backend reprsentation 
        DiGraph.__init__(self)

        # Utility functions for packing and unpacking edge information into an integer
        self.regioncount = len( self.regions )
        self.edge2hash = lambda start, end: start * self.regioncount + end
        self.hash2edge = lambda hashed: hashed / self.regioncount, #hashed%regioncount

        # source and sink along one-step paths phase space (maps between regions)
        for s, t in self.transitions.edges():
            # generators supported on each region
            r2g = ( self.regions[ s ], self.regions[ t ] )
            matidx = ( r2g[0][0],r2g[0][-1]+1,
                       r2g[1][0],r2g[1][-1]+1 )
            edge = Walk(start=s,
                        end=t,
                        edges=frozenset( [(s,t)] ),#frozenset( [self.edge2hash( s, t )] ),
                        matrix=self.generators[ matidx[2]:matidx[3],
                                                matidx[0]:matidx[1] ],
                        length=1
                        )
            if debug:
                print "Walk from ", s, " --> ", t
                print "  region to generator map:", r2g[0], r2g[1]
                print "  corresponding edge matrix ('color'):\n", edge.matrix
                print "  mat.shape:", edge.matrix.shape
                print ""
            if not edge.zero():
                self.graph.add_edge( s, t, edge=edge )
                self.library.add( edge )
コード例 #2
0
class IndexMapProcessor(object):
    """
    Processes a given index map of generators.
    """

    def __init__(self, indexmap, check_trace=False, debug=False):
        """
        indexmap -- IndexMap object
        """
        self.debug = debug
        self.check_trace = check_trace
        self.map = indexmap
        # Stores all edge sets that need to have one edge cut
        self.bad_edges = BadLibrary()

        # Unravel the index map (stored as a graph) into list of 1-step walks.
        self.edge_walks = {}
        for start, end, attr in self.map.graph.edges_iter(data=True):
            self.edge_walks[(start, end)] = attr["edge"]
            #        self.edge_walks = [ attr["edge"] ]

        # Stores edges that need to be expanded, to search for more edges
        # init with the 1-step walks above
        self.todo = deque(self.edge_walks.values())

        # Stores all edges that are unverified
        # again, init with the 1-step walks
        self.unverified = UnverifiedLibrary(self.edge_walks.values())

    def check_walk(self, walk):
        """
        Check whether the matrix product is zero.

        Returns True if either the matrix product is zero or the trace of a cycle is zero.
        """
        # If matrix product is zero matrix, always add to bad edge
        # set, so check first
        if walk.zero():
            return True
        # If we pass the zero matrix condition, and check_trace==True,
        # then check if we're a cycle and if the trace is zero.
        if self.check_trace:
            if walk.cycle() and walk.zero_trace():
                return True
        return False

    def find_bad_edge_sets(self, maxLength):
        """
        Version of Algorithms 6 in Day, Frongillo, Trevino.

        maxLength -- maximum length of the paths allowed in edge verifications.

        Overview of algorithm:
        ---------------------

        self.todo -- Holds most recent Walks to be extended and verified.

        self.unverified -- Holds _all_ unverified Walks. Extended
        paths from todo are checked against those in unverified to see
        if a reduction exists.
        """
        if self.debug:
            maxlen = 1

        while self.todo[0].length <= maxLength:
            # Grab the first walk to extend
            old = self.todo.popleft()
            if self.debug:
                print "Extending:", old
                print "-------------------"
                print " matrix", old.matrix
                if old.length > maxlen:
                    maxlen = old.length
                    print ""
                    print "**** LENGTH ****", maxlen
                    print ""

            # Now take every edge that comes out from the end of the old walk
            for succ in self.map.graph.successors_iter(old.end):
                next_step = self.edge_walks[(old.end, succ)]
                if self.debug:
                    print "Successor edge:", next_step
                    print " matrix"
                    print next_step.matrix
                # for next_step in ( append["edge"] for append in self.map[old.end] ):
                # Create a new walk by appending the new edge
                new_walk = old + next_step

                if self.debug:
                    print "--> New walk:"
                    print new_walk
                    print new_walk.matrix

                # Check if the walk has an edgeset that will already be cut...
                # If so, ignore it
                if new_walk.edges in self.bad_edges:
                    continue

                # Check if the walk is a zero matrix, or is a cycle with zero
                # trace. If so, add it to the bad edge list.
                if self.check_walk(new_walk):
                    if self.debug:
                        print "=========================="
                        print "BADS", self.bad_edges.bads
                        print " ** Adding BAD edgeset **"
                        print new_walk.edges
                        print new_walk.matrix
                        print "=========================="
                    self.bad_edges.add(new_walk.edges)
                    continue

                # Let p = new_walk. If there exists
                # another walk, q, such that (i) p == s-u and q == s-u
                # (share same edges), (ii) |q| <= |p| (p is longer
                # than q), (iii) and q.matrix = a * p.matrix, then we
                # can ignore new_walk "by induction"
                if self.unverified.reduction_exists(new_walk, debug=self.debug):
                    continue

                # We have not decided if this path is bad or good, so it has to
                # added back into the queue of edges to check
                self.todo.append(new_walk)
                self.unverified.add(new_walk)

                if self.debug:
                    print "\n\n"

    def cut_bad_edge_sets(self, **kwargs):
        """
        Remove all edges in 
        """
        fargs = {bad_edge_sets: self.bad_edges.bad, cut_edges: [], excluded_edges: [], best_entropy: -1, cutoff: 10000}

    def contruct_symbolic_system(self):
        """
        Construct a symbolic system on phase space from allowable
        transitions.
        """
        pass