コード例 #1
0
def main():
    """This demo visualizes box 8C format predicted by MLOD, before
    getting converted to Box 3D.

    Keys:
        F1: Toggle predictions
        F2: Toggle easy ground truth objects (Green)
        F3: Toggle medium ground truth objects (Orange)
        F4: Toggle hard ground truth objects (Red)
        F5: Toggle all ground truth objects (default off)

        F6: Toggle 3D voxel grid
        F7: Toggle point cloud
    """
    ##############################
    # Options
    ##############################
    mlod_score_threshold = 0.1
    show_orientations = True

    checkpoint_name = 'mlod_exp_8c'

    global_step = None

    sample_name = None

    dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL_HALF)

    dataset = DatasetBuilder.build_kitti_dataset(dataset_config)
    ##############################
    # Setup Paths
    ##############################

    # # # Cars # # #
    # sample_name = '000050'
    # sample_name = '000104'
    # sample_name = '000169'
    # sample_name = '000191'
    # sample_name = '000360'
    # sample_name = '001783'
    # sample_name = '001820'
    # sample_name = '006338'

    # # # People # # #
    # val_half split
    # sample_name = '000001'
    sample_name = '000005'  # Easy, 1 ped
    # sample_name = '000122'  # Easy, 1 cyc
    # sample_name = '000134'  # Hard, lots of people
    # sample_name = '000167'  # Medium, 1 ped, 2 cycs
    # sample_name = '000187'  # Medium, 1 ped on left
    # sample_name = '000381'  # Easy, 1 ped
    # sample_name = '000398'  # Easy, 1 ped
    # sample_name = '000401'  # Hard, obscured peds
    # sample_name = '000407'  # Easy, 1 ped
    # sample_name = '000448'  # Hard, several far people
    # sample_name = '000486'  # Hard 2 obscured peds
    # sample_name = '000509'  # Easy, 1 ped
    # sample_name = '000718'  # Hard, lots of people
    # sample_name = '002216'  # Easy, 1 cyc

    # Random sample
    if sample_name is None:
        sample_idx = np.random.randint(0, dataset.num_samples)
        sample_name = dataset.sample_list[sample_idx]

    img_idx = int(sample_name)

    # Text files directory
    predictions_and_scores_dir = mlod.root_dir() + \
        '/data/outputs/' + checkpoint_name + '/predictions' +  \
        '/final_boxes_8c_and_scores/' + dataset.data_split

    # Get checkpoint step
    steps = os.listdir(predictions_and_scores_dir)
    steps.sort(key=int)
    print('Available steps: {}'.format(steps))

    # Use latest checkpoint if no index provided
    if global_step is None:
        global_step = steps[-1]

    ##############################
    # predictions
    ##############################
    # Load predictions from files
    predictions_and_scores = np.loadtxt(
        predictions_and_scores_dir +
        "/{}/{}.txt".format(global_step, sample_name))

    predictions_boxes_8c = predictions_and_scores[:, 0:24]
    prediction_scores = predictions_and_scores[:, 24]

    score_mask = prediction_scores >= mlod_score_threshold
    predictions_boxes_8c = predictions_boxes_8c[score_mask]

    all_vtk_box_corners = []
    predictions_boxes_8c = np.reshape(predictions_boxes_8c, [-1, 3, 8])
    for i in range(len(predictions_boxes_8c)):
        box_8c = predictions_boxes_8c[i, :, :]
        vtk_box_corners = VtkBox8c()
        vtk_box_corners.set_objects(box_8c)
        all_vtk_box_corners.append(vtk_box_corners)

    ##############################
    # Ground Truth
    ##############################
    if dataset.has_labels:
        easy_gt_objs, medium_gt_objs, \
            hard_gt_objs, all_gt_objs = \
            demo_utils.get_gts_based_on_difficulty(dataset,
                                                   img_idx)
    else:
        easy_gt_objs = medium_gt_objs = hard_gt_objs = all_gt_objs = []

    ##############################
    # Point Cloud
    ##############################
    image_path = dataset.get_rgb_image_path(sample_name)
    image = cv2.imread(image_path)
    img_idx = int(sample_name)

    points, point_colours = demo_utils.get_filtered_pc_and_colours(
        dataset, image, img_idx)

    # Voxelize the point cloud for visualization
    voxel_grid = VoxelGrid()
    voxel_grid.voxelize(points, voxel_size=0.1, create_leaf_layout=False)

    ##############################
    # Visualization
    ##############################
    # Create VtkVoxelGrid
    vtk_voxel_grid = VtkVoxelGrid()
    vtk_voxel_grid.set_voxels(voxel_grid)

    vtk_point_cloud = VtkPointCloud()
    vtk_point_cloud.set_points(points, point_colours)

    # Create VtkAxes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create VtkBoxes for ground truth
    vtk_easy_gt_boxes, vtk_medium_gt_boxes, \
        vtk_hard_gt_boxes, vtk_all_gt_boxes = \
        demo_utils.create_gt_vtk_boxes(easy_gt_objs,
                                       medium_gt_objs,
                                       hard_gt_objs,
                                       all_gt_objs,
                                       show_orientations)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)

    vtk_box_actors = vtk.vtkAssembly()

    # Create VtkBoxes for prediction boxes
    for i in range(len(all_vtk_box_corners)):
        # Adding labels, slows down rendering
        # vtk_renderer.AddActor(all_vtk_box_corners[i].
        # vtk_text_labels.vtk_actor)
        vtk_box_actors.AddPart(all_vtk_box_corners[i].vtk_actor)

    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)

    vtk_renderer.SetBackground(0.2, 0.3, 0.4)
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)

    vtk_renderer.AddActor(vtk_hard_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_medium_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_easy_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_all_gt_boxes.vtk_actor)

    vtk_renderer.AddActor(vtk_box_actors)

    vtk_renderer.AddActor(axes)

    # Set initial properties for some actors
    vtk_point_cloud.vtk_actor.GetProperty().SetPointSize(2)
    vtk_voxel_grid.vtk_actor.SetVisibility(0)
    vtk_all_gt_boxes.vtk_actor.SetVisibility(0)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(160.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName(
        "Predictions: Step {}, Sample {}, Min Score {}".format(
            global_step,
            sample_name,
            mlod_score_threshold,
        ))

    vtk_render_window.SetSize(900, 600)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_box_actors, vtk_easy_gt_boxes.vtk_actor,
            vtk_medium_gt_boxes.vtk_actor, vtk_hard_gt_boxes.vtk_actor,
            vtk_all_gt_boxes.vtk_actor, vtk_voxel_grid.vtk_actor,
            vtk_point_cloud.vtk_actor
        ]))

    vtk_render_window_interactor.Start()
コード例 #2
0
def main():
    """
     Visualization of the mini batch anchors for RpnModel training.

     Keys:
        F1: Toggle mini batch anchors
        F2: Toggle positive/negative proposal anchors
        F3: Toggle easy ground truth objects (Green)
        F4: Toggle medium ground truth objects (Orange)
        F5: Toggle hard ground truth objects (Red)
        F6: Toggle all ground truth objects (default off)
        F7: Toggle ground-plane
     """

    anchor_colour_scheme = {
        "Car": (255, 0, 0),             # Red
        "Pedestrian": (255, 150, 50),   # Orange
        "Cyclist": (150, 50, 100),      # Purple
        "DontCare": (255, 255, 255),    # White

        "Anchor": (150, 150, 150),      # Gray

        "Positive": (0, 255, 255),      # Teal
        "Negative": (255, 0, 255)       # Bright Purple
    }

    ##############################
    # Options
    ##############################
    show_orientations = True

    # Classes name
    config_name = 'car'
    # config_name = 'ped'
    # config_name = 'cyc'
    # config_name = 'ppl'

    # # # Random sample # # #
    sample_name = None

    # Small cars
    # sample_name = '000008'
    # sample_name = '000639'

    # # # Cars # # #
    # sample_name = "000001"
    # sample_name = "000050"
    # sample_name = "000112"
    # sample_name = "000169"
    # sample_name = "000191"

    # # # People # # #
    # sample_name = '000000'

    # val_half
    # sample_name = '000001'  # Hard, 1 far cyc
    # sample_name = '000005'  # Easy, 1 ped
    # sample_name = '000122'  # Easy, 1 cyc
    # sample_name = '000134'  # Hard, lots of people
    # sample_name = '000167'  # Medium, 1 ped, 2 cycs
    # sample_name = '000187'  # Medium, 1 ped on left
    # sample_name = '000381'  # Easy, 1 ped
    # sample_name = '000398'  # Easy, 1 ped
    # sample_name = '000401'  # Hard, obscured peds
    # sample_name = '000407'  # Easy, 1 ped
    sample_name = '000448'  # Hard, several far people
    # sample_name = '000486'  # Hard 2 obscured peds
    # sample_name = '000509'  # Easy, 1 ped
    # sample_name = '000718'  # Hard, lots of people
    # sample_name = '002216'  # Easy, 1 cyc

    # sample_name = "000000"
    # sample_name = "000011"
    # sample_name = "000015"
    # sample_name = "000028"
    # sample_name = "000035"
    # sample_name = "000134"
    # sample_name = "000167"
    # sample_name = '000379'
    # sample_name = '000381'
    # sample_name = '000397'
    # sample_name = '000398'
    # sample_name = '000401'
    # sample_name = '000407'
    # sample_name = '000486'
    # sample_name = '000509'

    # # Cyclists # # #
    # sample_name = '000122'
    # sample_name = '000448'

    # # # Multiple classes # # #
    # sample_name = "000764"
    ##############################
    # End of Options
    ##############################

    # Dataset config
    dataset_config_path = mlod.top_dir() + \
        '/demos/configs/mb_rpn_{}.config'.format(config_name)

    # Create Dataset
    dataset = DatasetBuilder.load_dataset_from_config(
        dataset_config_path)

    # Random sample
    if sample_name is None:
        sample_idx = np.random.randint(0, dataset.num_samples)
        sample_name = dataset.sample_list[sample_idx].name

    anchor_strides = dataset.kitti_utils.anchor_strides

    img_idx = int(sample_name)

    print("Showing mini batch for sample {}".format(sample_name))

    image = cv2.imread(dataset.get_rgb_image_path(sample_name))
    image_shape = [image.shape[1], image.shape[0]]

    # KittiUtils class
    dataset_utils = dataset.kitti_utils

    ground_plane = obj_utils.get_road_plane(img_idx, dataset.planes_dir)

    point_cloud = obj_utils.get_depth_map_point_cloud(img_idx,
                                                      dataset.calib_dir,
                                                      dataset.depth_dir,
                                                      image_shape)

    points = point_cloud.T
    point_colours = vis_utils.project_img_to_point_cloud(points, image,
                                                         dataset.calib_dir,
                                                         img_idx)

    clusters, _ = dataset.get_cluster_info()
    anchor_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()

    # Read mini batch info
    anchors_info = dataset_utils.get_anchors_info(
        dataset.classes_name, anchor_strides, sample_name)

    if not anchors_info:
        # Exit early if anchors_info is empty
        print("Anchors info is empty, please try a different sample")
        return

    # Generate anchors for all classes
    all_anchor_boxes_3d = []
    for class_idx in range(len(dataset.classes)):

        anchor_boxes_3d = anchor_generator.generate(
            area_3d=dataset.kitti_utils.area_extents,
            anchor_3d_sizes=clusters[class_idx],
            anchor_stride=anchor_strides[class_idx],
            ground_plane=ground_plane)

        all_anchor_boxes_3d.extend(anchor_boxes_3d)
    all_anchor_boxes_3d = np.asarray(all_anchor_boxes_3d)

    # Use anchors info
    indices, ious, offsets, classes = anchors_info

    # Get non empty anchors from the indices
    anchor_boxes_3d = all_anchor_boxes_3d[indices]

    # Sample an RPN mini batch from the non empty anchors
    mini_batch_utils = dataset.kitti_utils.mini_batch_utils
    mb_mask_tf, _ = mini_batch_utils.sample_rpn_mini_batch(ious)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    mb_mask = sess.run(mb_mask_tf)

    mb_anchor_boxes_3d = anchor_boxes_3d[mb_mask]
    mb_anchor_ious = ious[mb_mask]

    # ObjectLabel list that hold all boxes to visualize
    obj_list = []

    num_positives = 0
    # Convert the mini_batch anchors to object list
    mini_batch_size = mini_batch_utils.rpn_mini_batch_size
    for i in range(mini_batch_size):
        if mb_anchor_ious[i] > mini_batch_utils.rpn_pos_iou_range[0]:
            obj_type = "Positive"
            num_positives += 1
        else:
            obj_type = "Negative"

        obj = box_3d_encoder.box_3d_to_object_label(mb_anchor_boxes_3d[i],
                                                    obj_type)
        obj_list.append(obj)

    print('Num positives', num_positives)

    # Convert all non-empty anchors to object list
    non_empty_anchor_objs = \
        [box_3d_encoder.box_3d_to_object_label(
            anchor_box_3d, obj_type='Anchor')
         for anchor_box_3d in anchor_boxes_3d]

    ##############################
    # Ground Truth
    ##############################
    if dataset.has_labels:
        easy_gt_objs, medium_gt_objs, \
            hard_gt_objs, all_gt_objs = demo_utils.get_gts_based_on_difficulty(
                dataset, img_idx)
    else:
        easy_gt_objs = medium_gt_objs = hard_gt_objs = all_gt_objs = []

    # Visualize 2D image
    vis_utils.visualization(dataset.rgb_image_dir, img_idx)
    plt.show(block=False)

    # Create VtkAxes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create VtkBoxes for mini batch anchors
    vtk_pos_anchor_boxes = VtkBoxes()
    vtk_pos_anchor_boxes.set_objects(obj_list, anchor_colour_scheme)

    # VtkBoxes for non empty anchors
    vtk_non_empty_anchors = VtkBoxes()
    vtk_non_empty_anchors.set_objects(non_empty_anchor_objs,
                                      anchor_colour_scheme)
    vtk_non_empty_anchors.set_line_width(0.1)

    # Create VtkBoxes for ground truth
    vtk_easy_gt_boxes, vtk_medium_gt_boxes, \
        vtk_hard_gt_boxes, vtk_all_gt_boxes = \
        demo_utils.create_gt_vtk_boxes(easy_gt_objs,
                                       medium_gt_objs,
                                       hard_gt_objs,
                                       all_gt_objs,
                                       show_orientations)

    vtk_point_cloud = VtkPointCloud()
    vtk_point_cloud.set_points(points, point_colours)
    vtk_point_cloud.vtk_actor.GetProperty().SetPointSize(2)

    vtk_ground_plane = VtkGroundPlane()
    vtk_ground_plane.set_plane(ground_plane, dataset.kitti_utils.bev_extents)

    # vtk_voxel_grid = VtkVoxelGrid()
    # vtk_voxel_grid.set_voxels(vx_grid)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)
    vtk_renderer.AddActor(vtk_ground_plane.vtk_actor)

    vtk_renderer.AddActor(vtk_hard_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_medium_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_easy_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_all_gt_boxes.vtk_actor)

    # vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_non_empty_anchors.vtk_actor)
    vtk_renderer.AddActor(vtk_pos_anchor_boxes.vtk_actor)
    vtk_renderer.AddActor(axes)
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(160.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    mb_iou_thresholds = np.round(
        [mini_batch_utils.rpn_neg_iou_range[1],
         mini_batch_utils.rpn_pos_iou_range[0]], 3)
    vtk_render_window.SetWindowName(
        'Sample {} RPN Mini Batch {}/{}, '
        'Num Positives {}'.format(
            sample_name,
            mb_iou_thresholds[0],
            mb_iou_thresholds[1],
            num_positives))
    vtk_render_window.SetSize(900, 500)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_non_empty_anchors.vtk_actor,
            vtk_pos_anchor_boxes.vtk_actor,

            vtk_easy_gt_boxes.vtk_actor,
            vtk_medium_gt_boxes.vtk_actor,
            vtk_hard_gt_boxes.vtk_actor,
            vtk_all_gt_boxes.vtk_actor,

            vtk_ground_plane.vtk_actor
        ]))

    # Render in VTK
    vtk_render_window.Render()
    vtk_render_window_interactor.Start()
コード例 #3
0
def main():
    """Shows a flipped sample in 3D
    """

    # Create Dataset
    dataset = DatasetBuilder.build_kitti_dataset(DatasetBuilder.KITTI_TRAINVAL)

    ##############################
    # Options
    ##############################
    # sample_name = "000191"
    sample_name = "000104"
    img_idx = int(sample_name)
    print("Showing anchors for sample {}".format(sample_name))

    ##############################
    # Load Sample Data
    ##############################
    ground_plane = obj_utils.get_road_plane(img_idx, dataset.planes_dir)

    image = cv2.imread(dataset.get_rgb_image_path(sample_name))
    image_shape = [image.shape[1], image.shape[0]]

    # Get point cloud
    point_cloud = obj_utils.get_depth_map_point_cloud(img_idx,
                                                      dataset.calib_dir,
                                                      dataset.depth_dir,
                                                      image_shape)

    points = np.array(point_cloud).T

    # Ground truth
    gt_labels = obj_utils.read_labels(dataset.label_dir, img_idx)

    # Filter ground truth
    gt_labels = dataset.kitti_utils.filter_labels(gt_labels)

    ##############################
    # Flip stuff
    ##############################
    image_flipped = np.fliplr(image)

    # Flip ground plane coeff (x)
    ground_plane_flipped = np.copy(ground_plane)
    ground_plane_flipped[0] = -ground_plane_flipped[0]

    # Flip 3D points
    points_flipped = kitti_aug.flip_points(points)

    # Get point cloud colours
    point_colours_flipped = project_flipped_img_to_point_cloud(
        points_flipped, image_flipped, dataset.calib_dir, img_idx)

    # Flip ground truth boxes
    gt_labels_flipped = [
        kitti_aug.flip_label_in_3d_only(obj) for obj in gt_labels
    ]

    ##############################
    # VTK Visualization
    ##############################
    # Axes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Point cloud
    vtk_point_cloud = VtkPointCloud()
    vtk_point_cloud.set_points(points_flipped,
                               point_colours=point_colours_flipped)

    # # Ground Truth Boxes
    vtk_boxes = VtkBoxes()
    vtk_boxes.set_objects(gt_labels_flipped,
                          VtkBoxes.COLOUR_SCHEME_KITTI,
                          show_orientations=True)

    # Renderer
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Add Actors to Rendered
    vtk_renderer.AddActor(axes)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)
    vtk_renderer.AddActor(vtk_boxes.vtk_actor)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(170.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName("Anchors")
    vtk_render_window.SetSize(900, 500)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)
    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_point_cloud.vtk_actor,
        ]))

    # Render in VTK
    vtk_render_window.Render()
    vtk_render_window_interactor.Start()
コード例 #4
0
def main():
    """
    Visualization for comparison of anchor filtering with
        2D vs 3D integral images

    Keys:
        F1: Toggle 3D integral image filtered anchors
        F2: Toggle 2D integral image filtered anchors
        F3: Toggle 2D integral image empty anchors
    """

    anchor_2d_colour_scheme = {"Anchor": (0, 0, 255)}  # Blue
    anchor_3d_colour_scheme = {"Anchor": (0, 255, 0)}  # Green
    anchor_unfiltered_colour_scheme = {"Anchor": (255, 0, 255)}  # Purple

    # Create Dataset
    dataset = DatasetBuilder.build_kitti_dataset(
        DatasetBuilder.KITTI_TRAINVAL)

    sample_name = "000001"
    img_idx = int(sample_name)
    print("Showing anchors for sample {}".format(sample_name))

    # Options
    # These clusters are from the trainval set and give more 2D anchors than 3D
    clusters = np.array([[3.55, 1.835, 1.525], [4.173, 1.69, 1.49]])
    anchor_stride = [3.0, 3.0]

    ground_plane = obj_utils.get_road_plane(img_idx, dataset.planes_dir)
    area_extents = np.array([[-40, 40], [-5, 3], [0, 70]])

    anchor_3d_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()

    # Generate anchors
    start_time = time.time()
    anchor_boxes_3d = anchor_3d_generator.generate(area_3d=area_extents,
                                                   anchor_3d_sizes=clusters,
                                                   anchor_stride=anchor_stride,
                                                   ground_plane=ground_plane)
    end_time = time.time()
    print("Anchors generated in {} s".format(end_time - start_time))

    # Get point cloud
    point_cloud = obj_utils.get_stereo_point_cloud(img_idx, dataset.calib_dir,
                                                   dataset.disp_dir)

    ground_offset_dist = 0.2
    offset_dist = 2.0

    # Filter points within certain xyz range and offset from ground plane
    # Filter points within 0.2m of the road plane
    slice_filter = dataset.kitti_utils.create_slice_filter(point_cloud,
                                                           area_extents,
                                                           ground_plane,
                                                           ground_offset_dist,
                                                           offset_dist)
    points = np.array(point_cloud).T
    points = points[slice_filter]

    anchors = box_3d_encoder.box_3d_to_anchor(anchor_boxes_3d)

    # Create 2D voxel grid
    vx_grid_2d = voxel_grid_2d.VoxelGrid2D()
    vx_grid_2d.voxelize_2d(points, 0.1, area_extents)

    # Create 3D voxel grid
    vx_grid_3d = voxel_grid.VoxelGrid()
    vx_grid_3d.voxelize(points, 0.1, area_extents)

    # Filter the boxes here!
    start_time = time.time()
    empty_filter_2d = anchor_filter.get_empty_anchor_filter_2d(
        anchors=anchors,
        voxel_grid_2d=vx_grid_2d,
        density_threshold=1)
    anchors_2d = anchor_boxes_3d[empty_filter_2d]
    end_time = time.time()
    print("2D Anchors filtered in {} s".format(end_time - start_time))
    print("Number of 2D anchors remaining: %d" % (anchors_2d.shape[0]))

    unfiltered_anchors_2d = anchor_boxes_3d[np.logical_not(empty_filter_2d)]

    # 3D filtering
    start_time = time.time()
    empty_filter_3d = anchor_filter.get_empty_anchor_filter(
        anchors=anchors,
        voxel_grid_3d=vx_grid_3d,
        density_threshold=1)
    anchor_boxes_3d = anchor_boxes_3d[empty_filter_3d]
    end_time = time.time()
    print("3D Anchors filtered in {} s".format(end_time - start_time))
    print("Number of 3D anchors remaining: %d" % (anchor_boxes_3d.shape[0]))

    anchor_2d_objects = []
    for anchor_idx in range(len(anchors_2d)):
        anchor = anchors_2d[anchor_idx]
        obj_label = box_3d_encoder.box_3d_to_object_label(anchor, 'Anchor')

        # Append to a list for visualization in VTK later
        anchor_2d_objects.append(obj_label)

    anchor_3d_objects = []
    for anchor_idx in range(len(anchor_boxes_3d)):
        anchor = anchor_boxes_3d[anchor_idx]
        obj_label = box_3d_encoder.box_3d_to_object_label(anchor, 'Anchor')

        # Append to a list for visualization in VTK later
        anchor_3d_objects.append(obj_label)

    unfiltered_anchor_objects = []
    for anchor_idx in range(len(unfiltered_anchors_2d)):
        anchor = unfiltered_anchors_2d[anchor_idx]
        obj_label = box_3d_encoder.box_3d_to_object_label(anchor, 'Anchor')

        # Append to a list for visualization in VTK later
        unfiltered_anchor_objects.append(obj_label)

    # Create VtkAxes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create VtkBoxes for boxes
    vtk_2d_boxes = VtkBoxes()
    vtk_2d_boxes.set_objects(anchor_2d_objects, anchor_2d_colour_scheme)

    vtk_3d_boxes = VtkBoxes()
    vtk_3d_boxes.set_objects(anchor_3d_objects, anchor_3d_colour_scheme)

    vtk_unfiltered_boxes = VtkBoxes()
    vtk_unfiltered_boxes.set_objects(unfiltered_anchor_objects,
                                     anchor_unfiltered_colour_scheme)

    vtk_voxel_grid = VtkVoxelGrid()
    vtk_voxel_grid.set_voxels(vx_grid_3d)

    vtk_voxel_grid_2d = VtkVoxelGrid()
    vtk_voxel_grid_2d.set_voxels(vx_grid_2d)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_2d_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_3d_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_unfiltered_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_voxel_grid_2d.vtk_actor)
    vtk_renderer.AddActor(axes)
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(170.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName("Anchors")
    vtk_render_window.SetSize(900, 500)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)
    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_2d_boxes.vtk_actor,
            vtk_3d_boxes.vtk_actor,
            vtk_unfiltered_boxes.vtk_actor,
        ]))

    # Render in VTK
    vtk_render_window.Render()
    vtk_render_window_interactor.Start()
コード例 #5
0
def main():
    """
    This demo shows example mini batch info for full MlodModel training.
        This includes ground truth, ortho rotated ground truth,
        negative proposal anchors, positive proposal anchors, and a sampled
        mini batch.

        The 2D iou can be modified to show the effect of changing the iou
        threshold for mini batch sampling.

        In order to let this demo run without training an RPN, the proposals
        shown are being read from a text file.

    Keys:
        F1: Toggle ground truth
        F2: Toggle ortho rotated ground truth
        F3: Toggle negative proposal anchors
        F4: Toggle positive proposal anchors
        F5: Toggle mini batch anchors
    """

    ##############################
    #  Options
    ##############################
    # Config file folder, default (<mlod_root>/data/outputs/<checkpoint_name>)
    config_dir = None

    # checkpoint_name = None
    checkpoint_name = 'mlod_exp_example'
    data_split = 'val_half'

    # global_step = None
    global_step = 100000

    # # # Cars # # #
    # sample_name = "000050"
    sample_name = "000104"
    # sample_name = "000764"

    # # # People # # #
    # val_half
    # sample_name = '000001'  # Hard, 1 far cyc
    # sample_name = '000005'  # Easy, 1 ped
    # sample_name = '000122'  # Easy, 1 cyc
    # sample_name = '000134'  # Hard, lots of people
    # sample_name = '000167'  # Medium, 1 ped, 2 cycs
    # sample_name = '000187'  # Medium, 1 ped on left
    # sample_name = '000381'  # Easy, 1 ped
    # sample_name = '000398'  # Easy, 1 ped
    # sample_name = '000401'  # Hard, obscured peds
    # sample_name = '000407'  # Easy, 1 ped
    # sample_name = '000448'  # Hard, several far people
    # sample_name = '000486'  # Hard 2 obscured peds
    # sample_name = '000509'  # Easy, 1 ped
    # sample_name = '000718'  # Hard, lots of people
    # sample_name = '002216'  # Easy, 1 cyc

    mini_batch_size = 512
    neg_proposal_2d_iou_hi = 0.6
    pos_proposal_2d_iou_lo = 0.65

    bkg_proposals_line_width = 0.5
    neg_proposals_line_width = 0.5
    mid_proposals_line_width = 0.5
    pos_proposals_line_width = 1.0

    ##############################
    # End of Options
    ##############################

    img_idx = int(sample_name)
    print("Showing mini batch for sample {}".format(sample_name))

    # Read proposals from file
    if checkpoint_name is None:
        # Use VAL Dataset
        dataset = DatasetBuilder.build_kitti_dataset(DatasetBuilder.KITTI_VAL)

        # Load demo proposals
        proposals_and_scores_dir = mlod.top_dir() + \
            '/demos/data/predictions/' + checkpoint_name + \
            '/proposals_and_scores/' + dataset.data_split
    else:
        if config_dir is None:
            config_dir = mlod.root_dir() + '/data/outputs/' + checkpoint_name

        # Parse experiment config
        pipeline_config_file = \
            config_dir + '/' + checkpoint_name + '.config'
        _, _, _, dataset_config = \
            config_builder_util.get_configs_from_pipeline_file(
                pipeline_config_file, is_training=False)

        dataset_config.data_split = data_split
        dataset = DatasetBuilder.build_kitti_dataset(dataset_config,
                                                     use_defaults=False)

        # Overwrite
        mini_batch_utils = dataset.kitti_utils.mini_batch_utils
        mini_batch_utils.mlod_neg_iou_range[1] = neg_proposal_2d_iou_hi
        mini_batch_utils.mlod_pos_iou_range[0] = pos_proposal_2d_iou_lo

        # Load proposals from outputs folder
        proposals_and_scores_dir = mlod.root_dir() + \
            '/data/outputs/' + checkpoint_name + \
            '/predictions/proposals_and_scores/' + dataset.data_split

    # Get checkpoint step
    steps = os.listdir(proposals_and_scores_dir)
    steps.sort(key=int)
    print('Available steps: {}'.format(steps))

    # Use latest checkpoint if no index provided
    if global_step is None:
        global_step = steps[-1]

    proposals_and_scores = np.loadtxt(
        proposals_and_scores_dir +
        "/{}/{}.txt".format(global_step, sample_name))
    proposal_boxes_3d = proposals_and_scores[:, 0:7]
    proposal_anchors = box_3d_encoder.box_3d_to_anchor(proposal_boxes_3d)

    # Get filtered ground truth
    obj_labels = obj_utils.read_labels(dataset.label_dir, img_idx)
    filtered_objs = dataset.kitti_utils.filter_labels(obj_labels)

    # Convert ground truth to anchors
    gt_boxes_3d = np.asarray([
        box_3d_encoder.object_label_to_box_3d(obj_label)
        for obj_label in filtered_objs
    ])
    gt_anchors = box_3d_encoder.box_3d_to_anchor(gt_boxes_3d,
                                                 ortho_rotate=True)

    # Ortho rotate ground truth
    gt_ortho_boxes_3d = box_3d_encoder.anchors_to_box_3d(gt_anchors)
    gt_ortho_objs = [
        box_3d_encoder.box_3d_to_object_label(box_3d, obj_type='OrthoGt')
        for box_3d in gt_ortho_boxes_3d
    ]

    # Project gt and anchors into BEV
    gt_bev_anchors, _ = \
        anchor_projector.project_to_bev(gt_anchors,
                                        dataset.kitti_utils.bev_extents)
    bev_anchors, _ = \
        anchor_projector.project_to_bev(proposal_anchors,
                                        dataset.kitti_utils.bev_extents)

    # Reorder boxes into (y1, x1, y2, x2) order
    gt_bev_anchors_tf_order = anchor_projector.reorder_projected_boxes(
        gt_bev_anchors)
    bev_anchors_tf_order = anchor_projector.reorder_projected_boxes(
        bev_anchors)

    # Convert to box_list format for iou calculation
    gt_anchor_box_list = box_list.BoxList(
        tf.cast(gt_bev_anchors_tf_order, tf.float32))
    anchor_box_list = box_list.BoxList(
        tf.cast(bev_anchors_tf_order, tf.float32))

    # Get IoU for every anchor
    tf_all_ious = box_list_ops.iou(gt_anchor_box_list, anchor_box_list)
    valid_ious = True
    # Make sure the calculated IoUs contain values. Since its a [N, M]
    # tensor, if there are no gt's for instance, that entry will be zero.
    if tf_all_ious.shape[0] == 0 or tf_all_ious.shape[1] == 0:
        print('#################################################')
        print('Warning: This sample does not contain valid IoUs')
        print('#################################################')
        valid_ious = False

    if valid_ious:
        tf_max_ious = tf.reduce_max(tf_all_ious, axis=0)
        tf_max_iou_indices = tf.argmax(tf_all_ious, axis=0)

        # Sample an RPN mini batch from the non empty anchors
        mini_batch_utils = dataset.kitti_utils.mini_batch_utils

        # Overwrite mini batch size and sample a mini batch
        mini_batch_utils.mlod_mini_batch_size = mini_batch_size
        mb_mask_tf, _ = mini_batch_utils.sample_mlod_mini_batch(tf_max_ious)

        # Create a session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        sess = tf.Session(config=config)

        # Run the graph to calculate ious for every proposal and
        # to get the mini batch mask
        all_ious, max_ious, max_iou_indices = sess.run(
            [tf_all_ious, tf_max_ious, tf_max_iou_indices])
        mb_mask = sess.run(mb_mask_tf)

        mb_anchors = proposal_anchors[mb_mask]
        mb_anchor_boxes_3d = box_3d_encoder.anchors_to_box_3d(mb_anchors)
        mb_anchor_ious = max_ious[mb_mask]

    else:
        # We have no valid IoU's, so assume all IoUs are zeros
        # and the mini-batch contains all the anchors since we cannot
        # mask without IoUs.
        max_ious = np.zeros(proposal_boxes_3d.shape[0])
        mb_anchor_ious = max_ious
        mb_anchors = proposal_anchors
        mb_anchor_boxes_3d = box_3d_encoder.anchors_to_box_3d(mb_anchors)

    # Create list of positive/negative proposals based on iou
    pos_proposal_objs = []
    mid_proposal_objs = []
    neg_proposal_objs = []
    bkg_proposal_objs = []
    for i in range(len(proposal_boxes_3d)):
        box_3d = proposal_boxes_3d[i]

        if max_ious[i] == 0.0:
            # Background proposals
            bkg_proposal_objs.append(
                box_3d_encoder.box_3d_to_object_label(
                    box_3d, obj_type='BackgroundProposal'))

        elif max_ious[i] < neg_proposal_2d_iou_hi:
            # Negative proposals
            neg_proposal_objs.append(
                box_3d_encoder.box_3d_to_object_label(
                    box_3d, obj_type='NegativeProposal'))

        elif max_ious[i] < pos_proposal_2d_iou_lo:
            # Middle proposals (in between negative and positive)
            mid_proposal_objs.append(
                box_3d_encoder.box_3d_to_object_label(
                    box_3d, obj_type='MiddleProposal'))

        elif max_ious[i] <= 1.0:
            # Positive proposals
            pos_proposal_objs.append(
                box_3d_encoder.box_3d_to_object_label(
                    box_3d, obj_type='PositiveProposal'))

        else:
            raise ValueError('Invalid IoU > 1.0')

    print('{} bkg, {} neg, {} mid, {} pos proposals:'.format(
        len(bkg_proposal_objs), len(neg_proposal_objs), len(mid_proposal_objs),
        len(pos_proposal_objs)))

    # Convert the mini_batch anchors to object list
    mb_obj_list = []
    for i in range(len(mb_anchor_ious)):
        if valid_ious and (mb_anchor_ious[i] >
                           mini_batch_utils.mlod_pos_iou_range[0]):
            obj_type = "Positive"
        else:
            obj_type = "Negative"

        obj = box_3d_encoder.box_3d_to_object_label(mb_anchor_boxes_3d[i],
                                                    obj_type)
        mb_obj_list.append(obj)

    # Point cloud
    image = cv2.imread(dataset.get_rgb_image_path(sample_name))
    points, point_colours = demo_utils.get_filtered_pc_and_colours(
        dataset, image, img_idx)

    # Visualize from here
    vis_utils.visualization(dataset.rgb_image_dir, img_idx)
    plt.show(block=False)

    # VtkPointCloud
    vtk_point_cloud = VtkPointCloud()
    vtk_point_cloud.set_points(points, point_colours)

    # VtkAxes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # VtkBoxes for ground truth
    vtk_gt_boxes = VtkBoxes()
    vtk_gt_boxes.set_objects(filtered_objs, COLOUR_SCHEME)

    # VtkBoxes for ortho ground truth
    vtk_gt_ortho_boxes = VtkBoxes()
    vtk_gt_ortho_boxes.set_objects(gt_ortho_objs, COLOUR_SCHEME)

    # VtkBoxes for background proposals
    vtk_bkg_proposal_boxes = VtkBoxes()
    vtk_bkg_proposal_boxes.set_objects(bkg_proposal_objs, COLOUR_SCHEME)
    vtk_bkg_proposal_boxes.set_line_width(bkg_proposals_line_width)

    # VtkBoxes for negative proposals
    vtk_neg_proposal_boxes = VtkBoxes()
    vtk_neg_proposal_boxes.set_objects(neg_proposal_objs, COLOUR_SCHEME)
    vtk_neg_proposal_boxes.set_line_width(neg_proposals_line_width)

    # VtkBoxes for middle proposals
    vtk_mid_proposal_boxes = VtkBoxes()
    vtk_mid_proposal_boxes.set_objects(mid_proposal_objs, COLOUR_SCHEME)
    vtk_mid_proposal_boxes.set_line_width(mid_proposals_line_width)

    # VtkBoxes for positive proposals
    vtk_pos_proposal_boxes = VtkBoxes()
    vtk_pos_proposal_boxes.set_objects(pos_proposal_objs, COLOUR_SCHEME)
    vtk_pos_proposal_boxes.set_line_width(pos_proposals_line_width)

    # Create VtkBoxes for mini batch anchors
    vtk_mb_boxes = VtkBoxes()
    vtk_mb_boxes.set_objects(mb_obj_list, COLOUR_SCHEME)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Add actors
    vtk_renderer.AddActor(axes)
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)

    vtk_renderer.AddActor(vtk_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_gt_ortho_boxes.vtk_actor)

    vtk_renderer.AddActor(vtk_bkg_proposal_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_neg_proposal_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_mid_proposal_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_pos_proposal_boxes.vtk_actor)

    vtk_renderer.AddActor(vtk_mb_boxes.vtk_actor)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(160.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName("MLOD Mini Batch")
    vtk_render_window.SetSize(900, 500)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_gt_boxes.vtk_actor,
            vtk_gt_ortho_boxes.vtk_actor,
            vtk_bkg_proposal_boxes.vtk_actor,
            vtk_neg_proposal_boxes.vtk_actor,
            vtk_mid_proposal_boxes.vtk_actor,
            vtk_pos_proposal_boxes.vtk_actor,
            vtk_mb_boxes.vtk_actor,
        ]))

    # Render in VTK
    vtk_render_window.Render()
    vtk_render_window_interactor.Start()
コード例 #6
0
def main():
    # Setting Paths
    cam = 2

    # dataset_dir = '/media/bradenhurl/hd/gta/object/'
    data_set = 'training'
    dataset_dir = os.path.expanduser('~') + '/wavedata-dev/demos/gta'
    #dataset_dir = os.path.expanduser('~') + '/Kitti/object/'
    dataset_dir = os.path.expanduser(
        '~') + '/GTAData/TruPercept/object_tru_percept8/'

    #Set to true to see predictions (results) from all perspectives
    use_results = True
    altPerspective = False
    perspID = 48133
    perspStr = '%07d' % perspID
    altPerspect_dir = os.path.join(dataset_dir, data_set + '/alt_perspective/')
    if altPerspective:
        data_set = data_set + '/alt_perspective/' + perspStr

    fromWiseWindows = False
    useEVE = False
    if fromWiseWindows:
        data_set = 'object'
        if useEVE:
            dataset_dir = '/media/bradenhurl/hd/data/eve/'
        else:
            dataset_dir = '/media/bradenhurl/hd/data/'
    image_dir = os.path.join(dataset_dir, data_set) + '/image_2'
    velo_dir = os.path.join(dataset_dir, data_set) + '/velodyne'
    calib_dir = os.path.join(dataset_dir, data_set) + '/calib'

    if use_results:
        label_dir = os.path.join(dataset_dir, data_set) + '/predictions'
    else:
        label_dir = os.path.join(dataset_dir, data_set) + '/label_2'

    base_dir = os.path.join(dataset_dir, data_set)

    comparePCs = False
    if comparePCs:
        velo_dir2 = os.path.join(dataset_dir, data_set) + '/velodyne'

    tracking = False
    if tracking:
        seq_idx = 1
        data_set = '%04d' % seq_idx
        dataset_dir = '/media/bradenhurl/hd/GTAData/August-01/tracking'
        image_dir = os.path.join(dataset_dir, 'images', data_set)
        label_dir = os.path.join(dataset_dir, 'labels', data_set)
        velo_dir = os.path.join(dataset_dir, 'velodyne', data_set)
        calib_dir = os.path.join(dataset_dir, 'training', 'calib', '0000')

    #Used for visualizing inferences
    #label_dir = '/media/bradenhurl/hd/avod/avod/data/outputs/pyramid_people_gta_40k'
    #label_dir = label_dir + '/predictions/kitti_predictions_3d/test/0.02/154000/data/'

    closeView = False
    pitch = 170
    pointSize = 3
    zoom = 1
    if closeView:
        pitch = 180.5
        pointSize = 3
        zoom = 35

    image_list = os.listdir(image_dir)

    fulcrum_of_points = True
    use_intensity = False
    img_idx = 2

    print('=== Loading image: {:06d}.png ==='.format(img_idx))
    print(image_dir)

    image = cv2.imread(image_dir + '/{:06d}.png'.format(img_idx))
    image_shape = (image.shape[1], image.shape[0])

    if use_intensity:
        point_cloud, intensity = obj_utils.get_lidar_point_cloud(
            img_idx, calib_dir, velo_dir, ret_i=use_intensity)
    else:
        point_cloud = obj_utils.get_lidar_point_cloud(img_idx,
                                                      calib_dir,
                                                      velo_dir,
                                                      im_size=image_shape)

    if comparePCs:
        point_cloud2 = obj_utils.get_lidar_point_cloud(img_idx,
                                                       calib_dir,
                                                       velo_dir2,
                                                       im_size=image_shape)
        point_cloud = np.hstack((point_cloud, point_cloud2))

    # Reshape points into N x [x, y, z]
    all_points = np.array(point_cloud).transpose().reshape((-1, 3))

    # Define Fixed Sizes for the voxel grid
    x_min = -85
    x_max = 85
    y_min = -5
    y_max = 5
    z_min = 3
    z_max = 85

    x_min = min(point_cloud[0])
    x_max = max(point_cloud[0])
    y_min = min(point_cloud[1])
    y_max = max(point_cloud[1])
    #z_min = min(point_cloud[2])
    z_max = max(point_cloud[2])

    # Filter points within certain xyz range
    area_filter = (point_cloud[0] > x_min) & (point_cloud[0] < x_max) & \
                  (point_cloud[1] > y_min) & (point_cloud[1] < y_max) & \
                  (point_cloud[2] > z_min) & (point_cloud[2] < z_max)

    all_points = all_points[area_filter]

    #point_colours = np.zeros(point_cloud.shape[1],0)
    #print(point_colours.shape)

    if fulcrum_of_points:
        # Get point colours
        point_colours = vis_utils.project_img_to_point_cloud(
            all_points, image, calib_dir, img_idx)
        print("Point colours shape: ", point_colours.shape)
        print("Sample 0 of colour: ", point_colours[0])
    elif use_intensity:
        adjusted = intensity == 65535
        intensity = intensity > 0
        intensity = np.expand_dims(intensity, -1)
        point_colours = np.hstack(
            (intensity * 255, intensity * 255 - adjusted * 255,
             intensity * 255 - adjusted * 255))
        print("Intensity shape:", point_colours.shape)
        print("Intensity sample: ", point_colours[0])

    # Create Voxel Grid
    voxel_grid = VoxelGrid()
    voxel_grid_extents = [[x_min, x_max], [y_min, y_max], [z_min, z_max]]
    print(voxel_grid_extents)

    start_time = time.time()
    voxel_grid.voxelize(all_points, 0.2, voxel_grid_extents)
    end_time = time.time()
    print("Voxelized in {} s".format(end_time - start_time))

    # Get bounding boxes
    gt_detections = obj_utils.read_labels(label_dir,
                                          img_idx,
                                          results=use_results)
    if gt_detections is None:
        gt_detections = []

    #perspective_utils.to_world(gt_detections, base_dir, img_idx)
    #perspective_utils.to_perspective(gt_detections, base_dir, img_idx)
    for entity_str in os.listdir(altPerspect_dir):
        if os.path.isdir(os.path.join(altPerspect_dir, entity_str)):
            perspect_detections = perspective_utils.get_detections(
                base_dir,
                altPerspect_dir,
                img_idx,
                perspID,
                entity_str,
                results=use_results)
            if perspect_detections != None:
                if use_results:
                    stripped_detections = trust_utils.strip_objs(
                        perspect_detections)
                    gt_detections = gt_detections + stripped_detections
                else:
                    gt_detections = gt_detections + perspect_detections

    # Create VtkPointCloud for visualization
    vtk_point_cloud = VtkPointCloud()
    if fulcrum_of_points or use_intensity:
        vtk_point_cloud.set_points(all_points, point_colours)
    else:
        vtk_point_cloud.set_points(all_points)
    vtk_point_cloud.vtk_actor.GetProperty().SetPointSize(pointSize)

    # Create VtkVoxelGrid for visualization
    vtk_voxel_grid = VtkVoxelGrid()
    vtk_voxel_grid.set_voxels(voxel_grid)

    COLOUR_SCHEME_PAPER = {
        "Car": (0, 0, 255),  # Blue
        "Pedestrian": (255, 0, 0),  # Red
        "Bus": (0, 0, 255),  #Blue
        "Cyclist": (150, 50, 100),  # Purple
        "Van": (255, 150, 150),  # Peach
        "Person_sitting": (150, 200, 255),  # Sky Blue
        "Truck": (0, 0, 255),  # Light Grey
        "Tram": (150, 150, 150),  # Grey
        "Misc": (100, 100, 100),  # Dark Grey
        "DontCare": (255, 255, 255),  # White
    }

    # Create VtkBoxes for boxes
    vtk_boxes = VtkBoxes()
    vtk_boxes.set_objects(gt_detections,
                          COLOUR_SCHEME_PAPER)  #vtk_boxes.COLOUR_SCHEME_KITTI)

    # Create Axes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_boxes.vtk_actor)
    #vtk_renderer.AddActor(axes)
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(pitch)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(zoom)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName(
        "Point Cloud and Voxel Grid, Image {}".format(img_idx))
    vtk_render_window.SetSize(1920, 1080)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    # Add custom interactor to toggle actor visibilities

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_point_cloud.vtk_actor,
            vtk_voxel_grid.vtk_actor,
            vtk_boxes.vtk_actor,
        ]))

    # Show image
    image = cv2.imread(image_dir + "/%06d.png" % img_idx)
    cv2.imshow("Press any key to continue", image)
    cv2.waitKey()

    # Render in VTK
    vtk_render_window.Render()
    vtk_render_window_interactor.Start()  # Blocking
コード例 #7
0
def main():
    """Flip RPN Mini Batch
     Visualization of the mini batch anchors for RpnModel training.

     Keys:
         F1: Toggle mini batch anchors
         F2: Flipped
     """

    anchor_colour_scheme = {
        "Car": (255, 0, 0),  # Red
        "Pedestrian": (255, 150, 50),  # Orange
        "Cyclist": (150, 50, 100),  # Purple
        "DontCare": (255, 255, 255),  # White
        "Anchor": (150, 150, 150),  # Gray
        "Regressed Anchor": (255, 255, 0),  # Yellow
        "Positive": (0, 255, 255),  # Teal
        "Negative": (255, 0, 255)  # Purple
    }

    dataset_config_path = mlod.root_dir() + \
        '/configs/mb_rpn_demo_cars.config'

    # dataset_config_path = mlod.root_dir() + \
    #     '/configs/mb_rpn_demo_people.config'

    ##############################
    # Options
    ##############################
    # # # Random sample # # #
    sample_name = None

    # # # Cars # # #
    # sample_name = "000001"
    # sample_name = "000050"
    # sample_name = "000104"
    # sample_name = "000112"
    # sample_name = "000169"
    # sample_name = "000191"

    sample_name = "003801"

    # # # Pedestrians # # #
    # sample_name = "000000"
    # sample_name = "000011"
    # sample_name = "000015"
    # sample_name = "000028"
    # sample_name = "000035"
    # sample_name = "000134"
    # sample_name = "000167"
    # sample_name = '000379'
    # sample_name = '000381'
    # sample_name = '000397'
    # sample_name = '000398'
    # sample_name = '000401'
    # sample_name = '000407'
    # sample_name = '000486'
    # sample_name = '000509'

    # # Cyclists # # #
    # sample_name = '000122'
    # sample_name = '000448'

    # # # Multiple classes # # #
    # sample_name = "000764"
    ##############################
    # End of Options
    ##############################

    # Create Dataset
    dataset = DatasetBuilder.load_dataset_from_config(dataset_config_path)

    # Random sample
    if sample_name is None:
        sample_idx = np.random.randint(0, dataset.num_samples)
        sample_name = dataset.sample_list[sample_idx]

    anchor_strides = dataset.kitti_utils.anchor_strides

    img_idx = int(sample_name)

    print("Showing mini batch for sample {}".format(sample_name))

    image = cv2.imread(dataset.get_rgb_image_path(sample_name))
    image_shape = [image.shape[1], image.shape[0]]

    # KittiUtils class
    dataset_utils = dataset.kitti_utils

    ground_plane = obj_utils.get_road_plane(img_idx, dataset.planes_dir)

    point_cloud = obj_utils.get_depth_map_point_cloud(img_idx,
                                                      dataset.calib_dir,
                                                      dataset.depth_dir,
                                                      image_shape)
    points = point_cloud.T

    # Grab ground truth
    ground_truth_list = obj_utils.read_labels(dataset.label_dir, img_idx)
    ground_truth_list = dataset_utils.filter_labels(ground_truth_list)

    stereo_calib_p2 = calib_utils.read_calibration(dataset.calib_dir,
                                                   img_idx).p2

    ##############################
    # Flip sample info
    ##############################
    start_time = time.time()

    flipped_image = kitti_aug.flip_image(image)
    flipped_point_cloud = kitti_aug.flip_point_cloud(point_cloud)
    flipped_gt_list = [
        kitti_aug.flip_label_in_3d_only(obj) for obj in ground_truth_list
    ]
    flipped_ground_plane = kitti_aug.flip_ground_plane(ground_plane)
    flipped_calib_p2 = kitti_aug.flip_stereo_calib_p2(stereo_calib_p2,
                                                      image_shape)

    print('flip sample', time.time() - start_time)

    flipped_points = flipped_point_cloud.T
    point_colours = vis_utils.project_img_to_point_cloud(
        points, image, dataset.calib_dir, img_idx)

    ##############################
    # Generate anchors
    ##############################
    clusters, _ = dataset.get_cluster_info()
    anchor_generator = grid_anchor_3d_generator.GridAnchor3dGenerator()

    # Read mini batch info
    anchors_info = dataset_utils.get_anchors_info(sample_name)

    all_anchor_boxes_3d = []
    all_ious = []
    all_offsets = []
    for class_idx in range(len(dataset.classes)):

        anchor_boxes_3d = anchor_generator.generate(
            area_3d=dataset.kitti_utils.area_extents,
            anchor_3d_sizes=clusters[class_idx],
            anchor_stride=anchor_strides[class_idx],
            ground_plane=ground_plane)

        if len(anchors_info[class_idx]) > 0:
            indices, ious, offsets, classes = anchors_info[class_idx]

            # Get non empty anchors from the indices
            non_empty_anchor_boxes_3d = anchor_boxes_3d[indices]

            all_anchor_boxes_3d.extend(non_empty_anchor_boxes_3d)
            all_ious.extend(ious)
            all_offsets.extend(offsets)

    if not len(all_anchor_boxes_3d) > 0:
        # Exit early if anchors_info is empty
        print("No anchors, Please try a different sample")
        return

    # Convert to ndarrays
    all_anchor_boxes_3d = np.asarray(all_anchor_boxes_3d)
    all_ious = np.asarray(all_ious)
    all_offsets = np.asarray(all_offsets)

    ##############################
    # Flip anchors
    ##############################
    start_time = time.time()

    # Flip anchors and offsets
    flipped_anchor_boxes_3d = kitti_aug.flip_boxes_3d(all_anchor_boxes_3d,
                                                      flip_ry=False)
    all_offsets[:, 0] = -all_offsets[:, 0]

    print('flip anchors and offsets', time.time() - start_time)

    # Overwrite with flipped things
    all_anchor_boxes_3d = flipped_anchor_boxes_3d
    points = flipped_points
    ground_truth_list = flipped_gt_list
    ground_plane = flipped_ground_plane

    ##############################
    # Mini batch sampling
    ##############################
    # Sample an RPN mini batch from the non empty anchors
    mini_batch_utils = dataset.kitti_utils.mini_batch_utils
    mb_mask_tf, _ = mini_batch_utils.sample_rpn_mini_batch(all_ious)

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    mb_mask = sess.run(mb_mask_tf)

    mb_anchor_boxes_3d = all_anchor_boxes_3d[mb_mask]
    mb_anchor_ious = all_ious[mb_mask]
    mb_anchor_offsets = all_offsets[mb_mask]

    # ObjectLabel list that hold all boxes to visualize
    obj_list = []

    # Convert the mini_batch anchors to object list
    for i in range(len(mb_anchor_boxes_3d)):
        if mb_anchor_ious[i] > mini_batch_utils.rpn_pos_iou_range[0]:
            obj_type = "Positive"
        else:
            obj_type = "Negative"

        obj = box_3d_encoder.box_3d_to_object_label(mb_anchor_boxes_3d[i],
                                                    obj_type)
        obj_list.append(obj)

    # Convert all non-empty anchors to object list
    non_empty_anchor_objs = \
        [box_3d_encoder.box_3d_to_object_label(
            anchor_box_3d, obj_type='Anchor')
         for anchor_box_3d in all_anchor_boxes_3d]

    ##############################
    # Regress Positive Anchors
    ##############################
    # Convert anchor_boxes_3d to anchors and apply offsets
    mb_pos_mask = mb_anchor_ious > mini_batch_utils.rpn_pos_iou_range[0]
    mb_pos_anchor_boxes_3d = mb_anchor_boxes_3d[mb_pos_mask]
    mb_pos_anchor_offsets = mb_anchor_offsets[mb_pos_mask]

    mb_pos_anchors = box_3d_encoder.box_3d_to_anchor(mb_pos_anchor_boxes_3d)
    regressed_pos_anchors = anchor_encoder.offset_to_anchor(
        mb_pos_anchors, mb_pos_anchor_offsets)

    # Convert regressed anchors to ObjectLabels for visualization
    regressed_anchor_boxes_3d = box_3d_encoder.anchors_to_box_3d(
        regressed_pos_anchors, fix_lw=True)
    regressed_anchor_objs = \
        [box_3d_encoder.box_3d_to_object_label(
            box_3d, obj_type='Regressed Anchor')
         for box_3d in regressed_anchor_boxes_3d]

    ##############################
    # Visualization
    ##############################
    cv2.imshow('{} flipped'.format(sample_name), flipped_image)
    cv2.waitKey()

    # Create VtkAxes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create VtkBoxes for mini batch anchors
    vtk_pos_anchor_boxes = VtkBoxes()
    vtk_pos_anchor_boxes.set_objects(obj_list, anchor_colour_scheme)

    # VtkBoxes for non empty anchors
    vtk_non_empty_anchors = VtkBoxes()
    vtk_non_empty_anchors.set_objects(non_empty_anchor_objs,
                                      anchor_colour_scheme)
    vtk_non_empty_anchors.set_line_width(0.1)

    # VtkBoxes for regressed anchors
    vtk_regressed_anchors = VtkBoxes()
    vtk_regressed_anchors.set_objects(regressed_anchor_objs,
                                      anchor_colour_scheme)
    vtk_regressed_anchors.set_line_width(5.0)

    # Create VtkBoxes for ground truth
    vtk_gt_boxes = VtkBoxes()
    vtk_gt_boxes.set_objects(ground_truth_list,
                             anchor_colour_scheme,
                             show_orientations=True)

    vtk_point_cloud = VtkPointCloud()
    vtk_point_cloud.set_points(points, point_colours)

    vtk_ground_plane = VtkGroundPlane()
    vtk_ground_plane.set_plane(ground_plane, dataset.kitti_utils.bev_extents)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()

    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)
    vtk_renderer.AddActor(vtk_non_empty_anchors.vtk_actor)
    vtk_renderer.AddActor(vtk_pos_anchor_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_regressed_anchors.vtk_actor)
    vtk_renderer.AddActor(vtk_gt_boxes.vtk_actor)
    vtk_renderer.AddActor(vtk_ground_plane.vtk_actor)

    vtk_renderer.AddActor(axes)
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(160.0)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(2.5)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName("RPN Mini Batch")
    vtk_render_window.SetSize(900, 500)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_non_empty_anchors.vtk_actor,
            vtk_pos_anchor_boxes.vtk_actor,
            vtk_regressed_anchors.vtk_actor,
            vtk_ground_plane.vtk_actor,
        ]))

    # Render in VTK
    vtk_render_window.Render()
    vtk_render_window_interactor.Start()
コード例 #8
0
def vis_pc(pc, obj_list, frustum_points=None):

    # Define Fixed Sizes for the voxel grid
    x_min = -85
    x_max = 85
    y_min = -5
    y_max = 5
    z_min = 3
    z_max = 85

    # Comment these out to filter points by area
    x_min = min(pc[0])
    x_max = max(pc[0])
    y_min = min(pc[1])
    y_max = max(pc[1])
    z_min = min(pc[2])
    z_max = max(pc[2])

    # Reshape points into N x [x, y, z]
    all_points = np.array(pc).transpose().reshape((-1, 3))

    # Filter points within certain xyz range
    area_filter = (pc[0] > x_min) & (pc[0] < x_max) & \
                  (pc[1] > y_min) & (pc[1] < y_max) & \
                  (pc[2] > z_min) & (pc[2] < z_max)

    all_points = all_points[area_filter]

    # Create Voxel Grid
    voxel_grid = VoxelGrid()
    voxel_grid_extents = [[x_min, x_max], [y_min, y_max], [z_min, z_max]]
    print(voxel_grid_extents)

    start_time = time.time()
    voxel_grid.voxelize(all_points, 0.2, voxel_grid_extents)
    end_time = time.time()
    print("Voxelized in {} s".format(end_time - start_time))

    # Some settings for the initial camera view and point size
    closeView = False
    pitch = 170
    pointSize = 4
    zoom = 1
    if closeView:
        pitch = 180.5
        pointSize = 3
        zoom = 35

    # Create VtkPointCloud for visualization
    vtk_point_cloud = VtkPointCloud()
    vtk_point_cloud.set_points(all_points)
    vtk_point_cloud.vtk_actor.GetProperty().SetPointSize(pointSize)

    # Create VtkVoxelGrid for visualization
    vtk_voxel_grid = VtkVoxelGrid()
    vtk_voxel_grid.set_voxels(voxel_grid)

    # Create VtkBoxes for boxes
    vtk_boxes = VtkBoxes()
    vtk_boxes.set_objects(obj_list, COLOUR_SCHEME, False)

    # Create Axes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(2, 2, 2)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_boxes.vtk_actor)
    vtk_renderer.AddActor(axes)
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)


    # Add lines for frustum
    if frustum_points is not None:
        frustum_actor = get_frustum_actor(frustum_points)
        vtk_renderer.AddActor(frustum_actor)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(pitch)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(zoom)

    # Zoom/navigate to the desired camera view then exit
    # Three lines will be output. Paste these here
    # Above forward view
    current_cam.SetPosition(7.512679241328601, -312.20497623371926, -130.38469206536766)
    current_cam.SetViewUp(-0.01952407393317445, -0.44874501090739727, 0.893446543293314)
    current_cam.SetFocalPoint(11.624950999358777, 14.835920755080867, 33.965665867613836)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName(
        "Point Cloud and Voxel Grid")
    vtk_render_window.SetSize(1920, 1080)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    # Add custom interactor to toggle actor visibilities

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_point_cloud.vtk_actor,
            vtk_voxel_grid.vtk_actor,
            vtk_boxes.vtk_actor,
        ]))

    # Render in VTK
    vtk_render_window.Render()

    vtk_render_window_interactor.Start()  # Blocking
コード例 #9
0
def visualize_objects_in_pointcloud(objects, COLOUR_SCHEME, dataset_dir,
              img_idx, fulcrum_of_points, use_intensity,
              receive_from_perspective, compare_pcs=False,
              show_3d_point_count=False, show_orientation=cfg.VISUALIZE_ORIENTATION,
              final_results=False, show_score=False,
              compare_with_gt=False, show_image=True,
              _text_positions=None, _text_labels=None):

    image_dir = os.path.join(dataset_dir, 'image_2')
    velo_dir = os.path.join(dataset_dir, 'velodyne')
    calib_dir = os.path.join(dataset_dir, 'calib')

    if compare_pcs:
        fulcrum_of_points = False

    print('=== Loading image: {:06d}.png ==='.format(img_idx))
    print(image_dir)

    image = cv2.imread(image_dir + '/{:06d}.png'.format(img_idx))
    image_shape = (image.shape[1], image.shape[0])

    if use_intensity:
        point_cloud,intensity = obj_utils.get_lidar_point_cloud(img_idx, calib_dir, velo_dir,
                                                    ret_i=use_intensity)
    else:
        point_cloud = obj_utils.get_lidar_point_cloud(img_idx, calib_dir, velo_dir,
                                                    im_size=image_shape)

    if compare_pcs:
        receive_persp_dir = os.path.join(altPerspect_dir, '{:07d}'.format(receive_from_perspective))
        velo_dir2 = os.path.join(receive_persp_dir, 'velodyne')
        print(velo_dir2)
        if not os.path.isdir(velo_dir2):
            print("Error: cannot find velo_dir2: ", velo_dir2)
            exit()
        point_cloud2 = obj_utils.get_lidar_point_cloud(img_idx, calib_dir, velo_dir2,
                                                    im_size=image_shape)
        #Set to true to display point clouds in world coordinates (for debugging)
        display_in_world=False
        if display_in_world:
            point_cloud = perspective_utils.pc_to_world(point_cloud.T, receive_persp_dir, img_idx)
            point_cloud2 = perspective_utils.pc_to_world(point_cloud2.T, dataset_dir, img_idx)
            point_cloud = np.hstack((point_cloud.T, point_cloud2.T))
        else:
            point_cloud2 = perspective_utils.pc_persp_transform(point_cloud2.T, receive_persp_dir, dataset_dir, img_idx)
            point_cloud = np.hstack((point_cloud, point_cloud2.T))

    # Reshape points into N x [x, y, z]
    all_points = np.array(point_cloud).transpose().reshape((-1, 3))

    # Define Fixed Sizes for the voxel grid
    x_min = -85
    x_max = 85
    y_min = -5
    y_max = 5
    z_min = 3
    z_max = 85

    # Comment these out to filter points by area
    x_min = min(point_cloud[0])
    x_max = max(point_cloud[0])
    y_min = min(point_cloud[1])
    y_max = max(point_cloud[1])
    z_min = min(point_cloud[2])
    z_max = max(point_cloud[2])

    # Filter points within certain xyz range
    area_filter = (point_cloud[0] > x_min) & (point_cloud[0] < x_max) & \
                  (point_cloud[1] > y_min) & (point_cloud[1] < y_max) & \
                  (point_cloud[2] > z_min) & (point_cloud[2] < z_max)

    all_points = all_points[area_filter]

    point_colours = None
    if fulcrum_of_points:
        # Get point colours
        point_colours = vis_utils.project_img_to_point_cloud(all_points, image,
                                                             calib_dir, img_idx)
    elif use_intensity:
        adjusted = intensity == 65535
        intensity = intensity > 0
        intensity = np.expand_dims(intensity,-1)
        point_colours = np.hstack((intensity*255,intensity*255-adjusted*255,intensity*255-adjusted*255))

    # Create Voxel Grid
    voxel_grid = VoxelGrid()
    voxel_grid_extents = [[x_min, x_max], [y_min, y_max], [z_min, z_max]]
    print(voxel_grid_extents)

    start_time = time.time()
    voxel_grid.voxelize(all_points, 0.2, voxel_grid_extents)
    end_time = time.time()
    print("Voxelized in {} s".format(end_time - start_time))

    # Some settings for the initial camera view and point size
    closeView = False
    pitch = 170
    pointSize = 2
    zoom = 1
    if closeView:
        pitch = 180.5
        pointSize = 3
        zoom = 35

    # Create VtkPointCloud for visualization
    vtk_point_cloud = VtkPointCloud()
    if point_colours is not None:
        vtk_point_cloud.set_points(all_points, point_colours)
    else:
        vtk_point_cloud.set_points(all_points)
    vtk_point_cloud.vtk_actor.GetProperty().SetPointSize(pointSize)

    # Create VtkVoxelGrid for visualization
    vtk_voxel_grid = VtkVoxelGrid()
    vtk_voxel_grid.set_voxels(voxel_grid)

    # Create VtkBoxes for boxes
    vtk_boxes = VtkBoxes()
    vtk_boxes.set_objects(objects, COLOUR_SCHEME, show_orientation)#vtk_boxes.COLOUR_SCHEME_KITTI)

    # Create Axes
    axes = vtk.vtkAxesActor()
    axes.SetTotalLength(5, 5, 5)

    # Create Voxel Grid Renderer in bottom half
    vtk_renderer = vtk.vtkRenderer()
    vtk_renderer.AddActor(vtk_point_cloud.vtk_actor)
    vtk_renderer.AddActor(vtk_voxel_grid.vtk_actor)
    vtk_renderer.AddActor(vtk_boxes.vtk_actor)
    vtk_renderer.AddActor(axes)
    if _text_positions is not None:
        vtk_text_labels = VtkTextLabels()
        vtk_text_labels.set_text_labels(_text_positions, _text_labels)
        vtk_renderer.AddActor(vtk_text_labels.vtk_actor)
    vtk_renderer.SetBackground(0.2, 0.3, 0.4)

    # Setup Camera
    current_cam = vtk_renderer.GetActiveCamera()
    current_cam.Pitch(pitch)
    current_cam.Roll(180.0)

    # Zooms out to fit all points on screen
    vtk_renderer.ResetCamera()

    # Zoom in slightly
    current_cam.Zoom(zoom)

    # Zoom/navigate to the desired camera view then exit
    # Three lines will be output. Paste these here
    # Above forward view
    current_cam.SetPosition(7.512679241328601, -312.20497623371926, -130.38469206536766)
    current_cam.SetViewUp(-0.01952407393317445, -0.44874501090739727, 0.893446543293314)
    current_cam.SetFocalPoint(11.624950999358777, 14.835920755080867, 33.965665867613836)

    # Top down view of synchronization
    current_cam.SetPosition(28.384757950371405, -125.46190537888288, 63.60263366961189)
    current_cam.SetViewUp(-0.02456679343399302, 0.0030507437719906913, 0.9996935358512673)
    current_cam.SetFocalPoint(27.042134804730317, 15.654378427929846, 63.13899801247614)

    current_cam.SetPosition(30.3869590224831, -50.28910856489952, 60.097631136698965)
    current_cam.SetViewUp(-0.0237472244952177, -0.06015048799392083, 0.997906803325274)
    current_cam.SetFocalPoint(27.06695416156647, 15.347824332314035, 63.97499987548391)


    # current_cam.SetPosition(14.391008769593322, -120.06549828061613, -1.567028749253062)
    # current_cam.SetViewUp(-0.02238762832327178, -0.1049057307562059, 0.9942301452644481)
    # current_cam.SetFocalPoint(10.601112314728102, 20.237110061924664, 13.151596441968126)

    # # Top down view of whole detection area
    # current_cam.SetPosition(11.168659642537031, -151.97163016078756, 17.590894639193227)
    # current_cam.SetViewUp(-0.02238762832327178, -0.1049057307562059, 0.9942301452644481)
    # current_cam.SetFocalPoint(6.5828849321501055, 17.79452593368671, 35.400431120570865)

    # Top down view of scenario
    current_cam.SetPosition(2.075612197299923, -76.19063612245675, 5.948366424752178)
    current_cam.SetViewUp(-0.02238762832327178, -0.1049057307562059, 0.9942301452644481)
    current_cam.SetFocalPoint(-0.5129380758134061, 19.637933198314016, 16.00138547483155)

    # Reset the clipping range to show all points
    vtk_renderer.ResetCameraClippingRange()

    # Setup Render Window
    vtk_render_window = vtk.vtkRenderWindow()
    vtk_render_window.SetWindowName(
        "Point Cloud and Voxel Grid, Image {}".format(img_idx))
    vtk_render_window.SetSize(1920, 1080)
    vtk_render_window.AddRenderer(vtk_renderer)

    # Setup custom interactor style, which handles mouse and key events
    vtk_render_window_interactor = vtk.vtkRenderWindowInteractor()
    vtk_render_window_interactor.SetRenderWindow(vtk_render_window)

    # Add custom interactor to toggle actor visibilities

    vtk_render_window_interactor.SetInteractorStyle(
        vis_utils.ToggleActorsInteractorStyle([
            vtk_point_cloud.vtk_actor,
            vtk_voxel_grid.vtk_actor,
            vtk_boxes.vtk_actor,
        ]))

    # Show image
    if show_image:
        image = cv2.imread(image_dir + "/%06d.png" % img_idx)
        cv2.imshow("Press any key to continue", image)
        cv2.waitKey()

    # Render in VTK
    vtk_render_window.Render()

    vtk_render_window_interactor.Start()  # Blocking
    # vtk_render_window_interactor.Initialize()   # Non-Blocking  

    # Obtain camera positional information for repeatable views
    print("current_cam.SetPosition{}".format(current_cam.GetPosition()))
    print("current_cam.SetViewUp{}".format(current_cam.GetViewUp()))
    print("current_cam.SetFocalPoint{}".format(current_cam.GetFocalPoint()))