def main(checkpoint_name): """This demo shows RPN proposals and AVOD predictions in 3D and 2D in image space. Given certain thresholds for proposals and predictions, it selects and draws the bounding boxes on the image sample. It goes through the entire proposal and prediction samples for the given dataset split. The proposals, overlaid, and prediction images can be toggled on or off separately in the options section. The prediction score and IoU with ground truth can be toggled on or off as well, shown as (score, IoU) above the detection. """ # checkpoint_name =='pyramid_cars_with_aug_example' dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL) ############################## # Options ############################## dataset_config.data_split = 'val' fig_size = (10, 6.1) rpn_score_threshold = 0.1 avod_score_threshold = 0.002 #0.1 #0.009 # <== final threshold sample_names = [90] + list(range( 98, 104)) + [138, 224, 270, 290, 310, 330, 520] # Convert to string with correct format (don't change) sample_names = ['{:06d}'.format(x) for x in sample_names] # gt_classes = ['Car'] gt_classes = ['Pedestrian', 'Cyclist'] # gt_classes = ['Car', 'Pedestrian', 'Cyclist'] img_dir = '/home/jhuang/repo/avod/input' # Overwrite this to select a specific checkpoint global_step = None # Drawing Toggles draw_proposals_separate = False draw_overlaid = False draw_predictions_separate = True # Show orientation for both GT and proposals/predictions draw_orientations_on_prop = False draw_orientations_on_pred = False # Draw 2D bounding boxes draw_projected_2d_boxes = True # Save images for samples with no detections save_empty_images = True draw_score = True draw_iou = True ############################## # End of Options ############################## # Get the dataset dataset = None data_split = 'val' # Setup Paths predictions_dir = avod.root_dir() + \ '/data/outputs/' + checkpoint_name + '/predictions' proposals_and_scores_dir = predictions_dir + \ '/proposals_and_scores/' + data_split predictions_and_scores_dir = predictions_dir + \ '/final_predictions_and_scores/' + data_split # Output images directories output_dir_base = predictions_dir + '/images_2d' # Get checkpoint step steps = os.listdir(proposals_and_scores_dir) steps.sort(key=int) print('Available steps: {}'.format(steps)) # Use latest checkpoint if no index provided if global_step is None: global_step = steps[-1] if draw_proposals_separate: prop_out_dir = output_dir_base + '/proposals/{}/{}/{}'.format( data_split, global_step, rpn_score_threshold) if not os.path.exists(prop_out_dir): os.makedirs(prop_out_dir) print('Proposal images saved to:', prop_out_dir) if draw_overlaid: overlaid_out_dir = output_dir_base + '/overlaid/{}/{}/{}'.format( data_split, global_step, avod_score_threshold) if not os.path.exists(overlaid_out_dir): os.makedirs(overlaid_out_dir) print('Overlaid images saved to:', overlaid_out_dir) if draw_predictions_separate: pred_out_dir = output_dir_base + '/predictions/{}/{}/{}'.format( data_split, global_step, avod_score_threshold) if not os.path.exists(pred_out_dir): os.makedirs(pred_out_dir) print('Prediction images saved to:', pred_out_dir) # Rolling average array of times for time estimation avg_time_arr_length = 10 last_times = np.repeat(time.time(), avg_time_arr_length) + \ np.arange(avg_time_arr_length) num_samples = len(sample_names) for sample_idx in range(num_samples): # Estimate time remaining with 5 slowest times start_time = time.time() last_times = np.roll(last_times, -1) last_times[-1] = start_time avg_time = np.mean(np.sort(np.diff(last_times))[-5:]) samples_remaining = num_samples - sample_idx est_time_left = avg_time * samples_remaining # Print progress and time remaining estimate sys.stdout.write('\rSaving {} / {}, Avg Time: {:.3f}s, ' 'Time Remaining: {:.2f}s\n'.format( sample_idx + 1, num_samples, avg_time, est_time_left)) sys.stdout.flush() sample_name = sample_names[sample_idx] img_idx = int(sample_name) ############################## # Predictions ############################## if draw_predictions_separate or draw_overlaid: predictions_file_path = predictions_and_scores_dir + \ "/{}/{}.txt".format(global_step, sample_name) if not os.path.exists(predictions_file_path): continue # Load predictions from files predictions_and_scores = np.loadtxt( predictions_and_scores_dir + "/{}/{}.txt".format(global_step, sample_name)) prediction_boxes_3d = predictions_and_scores[:, 0:7] prediction_scores = predictions_and_scores[:, 7] print("scores=", prediction_scores) prediction_class_indices = predictions_and_scores[:, 8] # process predictions only if we have any predictions left after # masking if len(prediction_boxes_3d) > 0: # Apply score mask avod_score_mask = prediction_scores >= avod_score_threshold prediction_boxes_3d = prediction_boxes_3d[avod_score_mask] print("len(prediction_boxes_3d)=", len(prediction_boxes_3d)) prediction_scores = prediction_scores[avod_score_mask] prediction_class_indices = \ prediction_class_indices[avod_score_mask] # # Swap l, w for predictions where w > l # swapped_indices = \ # prediction_boxes_3d[:, 4] > prediction_boxes_3d[:, 3] # prediction_boxes_3d = np.copy(prediction_boxes_3d) # prediction_boxes_3d[swapped_indices, 3] = \ # prediction_boxes_3d[swapped_indices, 4] # prediction_boxes_3d[swapped_indices, 4] = \ # prediction_boxes_3d[swapped_indices, 3] ############################## # Ground Truth ############################## # Get ground truth labels gt_objects = [] image_path = get_rgb_image_path(img_dir, img_idx, 'img_') image = Image.open(image_path) image_size = image.size # Read the stereo calibration matrix for visualization calib_dir = img_dir stereo_calib = load_calib(calib_dir, img_idx, 'calib.txt') calib_p2 = stereo_calib.p2 if draw_overlaid or draw_predictions_separate: num_of_predictions = 0 if len(prediction_boxes_3d) > 0: # Project the 3D box predictions to image space image_filter = [] final_boxes_2d = [] for i in range(len(prediction_boxes_3d)): box_3d = prediction_boxes_3d[i, 0:7] img_box = box_3d_projector.project_to_image_space( box_3d, calib_p2, truncate=True, image_size=image_size, discard_before_truncation=False) if img_box is not None: image_filter.append(True) final_boxes_2d.append(img_box) else: image_filter.append(False) final_boxes_2d = np.asarray(final_boxes_2d) final_prediction_boxes_3d = prediction_boxes_3d[image_filter] final_scores = prediction_scores[image_filter] final_class_indices = prediction_class_indices[image_filter] num_of_predictions = final_boxes_2d.shape[0] # Convert to objs final_prediction_objs = \ [box_3d_encoder.box_3d_to_object_label( prediction, obj_type='Prediction') for prediction in final_prediction_boxes_3d] for (obj, score) in zip(final_prediction_objs, final_scores): obj.score = score # else: # if save_empty_images: # pred_fig, pred_2d_axes, pred_3d_axes = \ # vis_utils.visualization(dataset.rgb_image_dir, # img_idx, # display=False, # fig_size=fig_size) # filename = pred_out_dir + '/' + sample_name + '.png' # plt.savefig(filename) # plt.close(pred_fig) # continue if draw_predictions_separate and num_of_predictions > 0: # Now only draw prediction boxes on images # on a new figure handler if draw_projected_2d_boxes: pred_fig, pred_2d_axes, pred_3d_axes = \ vis_utils.visualization_jhuang(img_dir, img_idx, 'img_', display=False, fig_size=fig_size) draw_predictions([], calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, pred_2d_axes, pred_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) else: pred_fig, pred_3d_axes = \ vis_utils.visualize_single_plot( dataset.rgb_image_dir, img_idx, display=False) draw_3d_predictions([], calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, pred_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) filename = pred_out_dir + '/' + sample_name + '.png' plt.savefig(filename) plt.close(pred_fig) print('\nDone')
def main(): """This demo shows RPN proposals and AVOD predictions in 3D and 2D in image space. Given certain thresholds for proposals and predictions, it selects and draws the bounding boxes on the image sample. It goes through the entire proposal and prediction samples for the given dataset split. The proposals, overlaid, and prediction images can be toggled on or off separately in the options section. The prediction score and IoU with ground truth can be toggled on or off as well, shown as (score, IoU) above the detection. """ dataset_config = DatasetBuilder.copy_config(DatasetBuilder.KITTI_VAL) ############################## # Options ############################## dataset_config.data_split = 'val' fig_size = (10, 6.1) rpn_score_threshold = 0.1 avod_score_threshold = 0.1 # gt_classes = ['Car'] gt_classes = ['Pedestrian', 'Cyclist'] # gt_classes = ['Car', 'Pedestrian', 'Cyclist'] # Overwrite this to select a specific checkpoint global_step = None checkpoint_name = sys.argv[1] #'pyramid_cars_with_aug_example' # Drawing Toggles draw_proposals_separate = False draw_overlaid = False draw_predictions_separate = True # Show orientation for both GT and proposals/predictions draw_orientations_on_prop = False draw_orientations_on_pred = False # Draw 2D bounding boxes draw_projected_2d_boxes = True # Save images for samples with no detections save_empty_images = True draw_score = True draw_iou = True ############################## # End of Options ############################## # Get the dataset dataset = DatasetBuilder.build_kitti_dataset(dataset_config) # Setup Paths predictions_dir = avod.root_dir() + \ '/data/outputs/' + checkpoint_name + '/predictions' proposals_and_scores_dir = predictions_dir + \ '/proposals_and_scores/' + dataset.data_split predictions_and_scores_dir = predictions_dir + \ '/final_predictions_and_scores/' + dataset.data_split # Output images directories output_dir_base = predictions_dir + '/images_2d' # Get checkpoint step steps = os.listdir(proposals_and_scores_dir) steps.sort(key=int) print('Available steps: {}'.format(steps)) # Use latest checkpoint if no index provided if global_step is None: global_step = steps[-1] if draw_proposals_separate: prop_out_dir = output_dir_base + '/proposals/{}/{}/{}'.format( dataset.data_split, global_step, rpn_score_threshold) if not os.path.exists(prop_out_dir): os.makedirs(prop_out_dir) print('Proposal images saved to:', prop_out_dir) if draw_overlaid: overlaid_out_dir = output_dir_base + '/overlaid/{}/{}/{}'.format( dataset.data_split, global_step, avod_score_threshold) if not os.path.exists(overlaid_out_dir): os.makedirs(overlaid_out_dir) print('Overlaid images saved to:', overlaid_out_dir) if draw_predictions_separate: pred_out_dir = output_dir_base + '/predictions/{}/{}/{}'.format( dataset.data_split, global_step, avod_score_threshold) if not os.path.exists(pred_out_dir): os.makedirs(pred_out_dir) print('Prediction images saved to:', pred_out_dir) # Rolling average array of times for time estimation avg_time_arr_length = 10 last_times = np.repeat(time.time(), avg_time_arr_length) + \ np.arange(avg_time_arr_length) for sample_idx in range(dataset.num_samples): # Estimate time remaining with 5 slowest times start_time = time.time() last_times = np.roll(last_times, -1) last_times[-1] = start_time avg_time = np.mean(np.sort(np.diff(last_times))[-5:]) samples_remaining = dataset.num_samples - sample_idx est_time_left = avg_time * samples_remaining # Print progress and time remaining estimate sys.stdout.write('\rSaving {} / {}, Avg Time: {:.3f}s, ' 'Time Remaining: {:.2f}s'.format( sample_idx + 1, dataset.num_samples, avg_time, est_time_left)) sys.stdout.flush() sample_name = dataset.sample_names[sample_idx] img_idx = int(sample_name) ############################## # Proposals ############################## if draw_proposals_separate or draw_overlaid: # Load proposals from files proposals_file_path = proposals_and_scores_dir + \ "/{}/{}.txt".format(global_step, sample_name) if not os.path.exists(proposals_file_path): print('Sample {}: No proposals, skipping'.format(sample_name)) continue print('Sample {}: Drawing proposals'.format(sample_name)) proposals_and_scores = np.loadtxt(proposals_file_path) proposal_boxes_3d = proposals_and_scores[:, 0:7] proposal_scores = proposals_and_scores[:, 7] # Apply score mask to proposals score_mask = proposal_scores > rpn_score_threshold proposal_boxes_3d = proposal_boxes_3d[score_mask] proposal_scores = proposal_scores[score_mask] proposal_objs = \ [box_3d_encoder.box_3d_to_object_label(proposal, obj_type='Proposal') for proposal in proposal_boxes_3d] ############################## # Predictions ############################## if draw_predictions_separate or draw_overlaid: predictions_file_path = predictions_and_scores_dir + \ "/{}/{}.txt".format(global_step, sample_name) if not os.path.exists(predictions_file_path): continue # Load predictions from files predictions_and_scores = np.loadtxt( predictions_and_scores_dir + "/{}/{}.txt".format(global_step, sample_name)) prediction_boxes_3d = predictions_and_scores[:, 0:7] prediction_scores = predictions_and_scores[:, 7] prediction_class_indices = predictions_and_scores[:, 8] # process predictions only if we have any predictions left after # masking if len(prediction_boxes_3d) > 0: # Apply score mask avod_score_mask = prediction_scores >= avod_score_threshold prediction_boxes_3d = prediction_boxes_3d[avod_score_mask] prediction_scores = prediction_scores[avod_score_mask] prediction_class_indices = \ prediction_class_indices[avod_score_mask] # # Swap l, w for predictions where w > l # swapped_indices = \ # prediction_boxes_3d[:, 4] > prediction_boxes_3d[:, 3] # prediction_boxes_3d = np.copy(prediction_boxes_3d) # prediction_boxes_3d[swapped_indices, 3] = \ # prediction_boxes_3d[swapped_indices, 4] # prediction_boxes_3d[swapped_indices, 4] = \ # prediction_boxes_3d[swapped_indices, 3] ############################## # Ground Truth ############################## # Get ground truth labels if dataset.has_labels: gt_objects = obj_utils.read_labels(dataset.label_dir, img_idx) else: gt_objects = [] # Filter objects to desired difficulty filtered_gt_objs = dataset.kitti_utils.filter_labels( gt_objects, classes=gt_classes) boxes2d, _, _ = obj_utils.build_bbs_from_objects( filtered_gt_objs, class_needed=gt_classes) image_path = dataset.get_rgb_image_path(sample_name) image = Image.open(image_path) image_size = image.size # Read the stereo calibration matrix for visualization stereo_calib = calib_utils.read_calibration(dataset.calib_dir, img_idx) calib_p2 = stereo_calib.p2 ############################## # Reformat and prepare to draw ############################## if draw_proposals_separate or draw_overlaid: proposals_as_anchors = box_3d_encoder.box_3d_to_anchor( proposal_boxes_3d) proposal_boxes, _ = anchor_projector.project_to_image_space( proposals_as_anchors, calib_p2, image_size) num_of_proposals = proposal_boxes_3d.shape[0] prop_fig, prop_2d_axes, prop_3d_axes = \ vis_utils.visualization(dataset.rgb_image_dir, img_idx, display=False) draw_proposals(filtered_gt_objs, calib_p2, num_of_proposals, proposal_objs, proposal_boxes, prop_2d_axes, prop_3d_axes, draw_orientations_on_prop) if draw_proposals_separate: # Save just the proposals filename = prop_out_dir + '/' + sample_name + '.png' plt.savefig(filename) if not draw_overlaid: plt.close(prop_fig) if draw_overlaid or draw_predictions_separate: if len(prediction_boxes_3d) > 0: # Project the 3D box predictions to image space image_filter = [] final_boxes_2d = [] for i in range(len(prediction_boxes_3d)): box_3d = prediction_boxes_3d[i, 0:7] img_box = box_3d_projector.project_to_image_space( box_3d, calib_p2, truncate=True, image_size=image_size, discard_before_truncation=False) if img_box is not None: image_filter.append(True) final_boxes_2d.append(img_box) else: image_filter.append(False) final_boxes_2d = np.asarray(final_boxes_2d) final_prediction_boxes_3d = prediction_boxes_3d[image_filter] final_scores = prediction_scores[image_filter] final_class_indices = prediction_class_indices[image_filter] num_of_predictions = final_boxes_2d.shape[0] # Convert to objs final_prediction_objs = \ [box_3d_encoder.box_3d_to_object_label( prediction, obj_type='Prediction') for prediction in final_prediction_boxes_3d] for (obj, score) in zip(final_prediction_objs, final_scores): obj.score = score else: if save_empty_images: pred_fig, pred_2d_axes, pred_3d_axes = \ vis_utils.visualization(dataset.rgb_image_dir, img_idx, display=False, fig_size=fig_size) filename = pred_out_dir + '/' + sample_name + '.png' plt.savefig(filename) plt.close(pred_fig) continue if draw_overlaid: # Overlay prediction boxes on image draw_predictions(filtered_gt_objs, calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, prop_2d_axes, prop_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) filename = overlaid_out_dir + '/' + sample_name + '.png' plt.savefig(filename) plt.close(prop_fig) if draw_predictions_separate: # Now only draw prediction boxes on images # on a new figure handler if draw_projected_2d_boxes: pred_fig, pred_2d_axes, pred_3d_axes = \ vis_utils.visualization(dataset.rgb_image_dir, img_idx, display=False, fig_size=fig_size) draw_predictions(filtered_gt_objs, calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, pred_2d_axes, pred_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) else: pred_fig, pred_3d_axes = \ vis_utils.visualize_single_plot( dataset.rgb_image_dir, img_idx, display=False) draw_3d_predictions(filtered_gt_objs, calib_p2, num_of_predictions, final_prediction_objs, final_class_indices, final_boxes_2d, pred_3d_axes, draw_score, draw_iou, gt_classes, draw_orientations_on_pred) filename = pred_out_dir + '/' + sample_name + '.png' plt.savefig(filename) plt.close(pred_fig) print('\nDone')