def show_power_law_plots(): """ CommandLine: python -m wbia.algo.hots.devcases --test-show_power_law_plots --show Example: >>> # DISABLE_DOCTEST >>> #%pylab qt4 >>> from wbia.algo.hots.devcases import * # NOQA >>> show_power_law_plots() >>> pt.show_if_requested() """ import numpy as np import wbia.plottool as pt xdata = np.linspace(0, 1, 1000) ydata = xdata fnum = 1 powers = [0.01, 0.1, 0.5, 1, 2, 30, 70, 100, 1000] nRows, nCols = pt.get_square_row_cols(len(powers), fix=True) pnum_next = pt.make_pnum_nextgen(nRows, nCols) for p in powers: plotkw = dict(fnum=fnum, marker='g-', linewidth=2, pnum=pnum_next(), title='p=%r' % (p, )) ydata_ = ydata**p pt.plot2(xdata, ydata_, **plotkw) pt.set_figtitle('power laws y = x ** p')
def sanity_checks(offset_list, Y_list, query_annots, ibs): nfeat_list = np.diff(offset_list) for Y, nfeat in ut.ProgIter(zip(Y_list, nfeat_list), 'checking'): assert nfeat == sum(ut.lmap(len, Y.fxs_list)) if False: # Visualize queries # Look at the standard query images here # http://www.robots.ox.ac.uk:5000/~vgg/publications/2007/Philbin07/philbin07.pdf from wbia.viz import viz_chip import wbia.plottool as pt pt.qt4ensure() fnum = 1 pnum_ = pt.make_pnum_nextgen(len(query_annots.aids) // 5, 5) for aid in ut.ProgIter(query_annots.aids): pnum = pnum_() viz_chip.show_chip( ibs, aid, in_image=True, annote=False, notitle=True, draw_lbls=False, fnum=fnum, pnum=pnum, )
def show_page(self): if self.fig is None: raise AssertionError( 'fig is None, did you run interction.start()?') import wbia.plottool as pt fig = ih.begin_interaction('expandable', self.fnum) if not any(self.pnum_list): # If no pnum was given, find a set that agrees with constraints self.nRows, self.nCols = pt.get_num_rc(len(self.pnum_list), nRows=self.nRows, nCols=self.nCols) nSubplots = len(self.func_list) pnum_ = pt.make_pnum_nextgen(self.nRows, self.nCols, nSubplots=nSubplots) pnum_list = [pnum_() for _ in self.pnum_list] else: pnum_list = self.pnum_list for index, (pnum, func) in enumerate(zip(pnum_list, self.func_list)): if check_if_subinteract(func): # Hack interclass = func interclass.static_plot(fnum=self.fnum, pnum=pnum) elif hasattr(func, 'plot'): inter = func inter.plot(fnum=self.fnum, pnum=pnum) else: try: func(fnum=self.fnum, pnum=pnum) except Exception as ex: ut.printex(ex, 'failed plotting', keys=['func', 'fnum', 'pnum']) raise ax = pt.gca() pt.set_plotdat(ax, 'plot_func', func) pt.set_plotdat(ax, 'expandable_index', index) # if self.interactive is None or self.interactive: # ih.connect_callback(fig, 'button_press_event', self.onclick) self.connect_callbacks() self.fig = fig return fig
def check_database_overlap(ibs1, ibs2): """ CommandLine: python -m wbia.other.dbinfo --test-get_dbinfo:1 --db PZ_MTEST dev.py -t listdbs python -m wbia.dbio.export_subset check_database_overlap --db PZ_MTEST --db2 PZ_MOTHERS CommandLine: python -m wbia.dbio.export_subset check_database_overlap python -m wbia.dbio.export_subset check_database_overlap --db1=PZ_MTEST --db2=PZ_Master0 # NOQA python -m wbia.dbio.export_subset check_database_overlap --db1=NNP_Master3 --db2=PZ_Master0 # NOQA python -m wbia.dbio.export_subset check_database_overlap --db1=GZ_Master0 --db2=GZ_ALL python -m wbia.dbio.export_subset check_database_overlap --db1=GZ_ALL --db2=lewa_grevys python -m wbia.dbio.export_subset check_database_overlap --db1=PZ_FlankHack --db2=PZ_Master1 python -m wbia.dbio.export_subset check_database_overlap --db1=PZ_PB_RF_TRAIN --db2=PZ_Master1 Example: >>> # SCRIPT >>> from wbia.dbio.export_subset import * # NOQA >>> import wbia >>> import utool as ut >>> #ibs1 = wbia.opendb(db='PZ_Master0') >>> #ibs2 = wbia.opendb(dbdir='/raid/work2/Turk/PZ_Master') >>> db1 = ut.get_argval('--db1', str, default='PZ_MTEST') >>> db2 = ut.get_argval('--db2', str, default='testdb1') >>> dbdir1 = ut.get_argval('--dbdir1', str, default=None) >>> dbdir2 = ut.get_argval('--dbdir2', str, default=None) >>> ibs1 = wbia.opendb(db=db1, dbdir=dbdir1) >>> ibs2 = wbia.opendb(db=db2, dbdir=dbdir2) >>> check_database_overlap(ibs1, ibs2) """ import numpy as np def print_isect(items1, items2, lbl=''): set1_ = set(items1) set2_ = set(items2) items_isect = set1_.intersection(set2_) fmtkw1 = dict( part=1, lbl=lbl, num=len(set1_), num_isect=len(items_isect), percent=100 * len(items_isect) / len(set1_), ) fmtkw2 = dict( part=2, lbl=lbl, num=len(set2_), num_isect=len(items_isect), percent=100 * len(items_isect) / len(set2_), ) fmt_a = ' * Num {lbl} {part}: {num_isect} / {num} = {percent:.2f}%' # fmt_b = ' * Num {lbl} isect: {num}' logger.info('Checking {lbl} intersection'.format(lbl=lbl)) logger.info(fmt_a.format(**fmtkw1)) logger.info(fmt_a.format(**fmtkw2)) # logger.info(fmt_b.format(lbl=lbl, num=len(items_isect))) # items = items_isect # list_ = items1 x_list1 = ut.find_list_indexes(items1, items_isect) x_list2 = ut.find_list_indexes(items2, items_isect) return x_list1, x_list2 gids1 = ibs1.images() gids2 = ibs2.images() # Find common images # items1, items2, lbl, = gids1.uuids, gids2.uuids, 'images' gx_list1, gx_list2 = print_isect(gids1.uuids, gids2.uuids, 'images') gids_isect1 = gids1.take(gx_list1) gids_isect2 = gids2.take(gx_list2) assert gids_isect2.uuids == gids_isect1.uuids, 'sequence must be aligned' SHOW_ISECT_GIDS = False if SHOW_ISECT_GIDS: if len(gx_list1) > 0: logger.info('gids_isect1 = %r' % (gids_isect1, )) logger.info('gids_isect2 = %r' % (gids_isect2, )) if False: # Debug code import wbia.viz import wbia.plottool as pt gid_pairs = list(zip(gids_isect1, gids_isect2)) pairs_iter = ut.ichunks(gid_pairs, chunksize=8) for fnum, pairs in enumerate(pairs_iter, start=1): pnum_ = pt.make_pnum_nextgen(nRows=len(pairs), nCols=2) for gid1, gid2 in pairs: wbia.viz.show_image(ibs1, gid1, pnum=pnum_(), fnum=fnum) wbia.viz.show_image(ibs2, gid2, pnum=pnum_(), fnum=fnum) # if False: # aids1 = ibs1.get_valid_aids() # aids2 = ibs2.get_valid_aids() # ibs1.update_annot_visual_uuids(aids1) # ibs2.update_annot_visual_uuids(aids2) # ibs1.update_annot_semantic_uuids(aids1) # ibs2.update_annot_semantic_uuids(aids2) # Check to see which intersecting images have different annotations image_aids_isect1 = gids_isect1.aids image_aids_isect2 = gids_isect2.aids image_avuuids_isect1 = np.array( ibs1.unflat_map(ibs1.get_annot_visual_uuids, image_aids_isect1)) image_avuuids_isect2 = np.array( ibs2.unflat_map(ibs2.get_annot_visual_uuids, image_aids_isect2)) changed_image_xs = np.nonzero( image_avuuids_isect1 != image_avuuids_isect2)[0] if len(changed_image_xs) > 0: logger.info( 'There are %d images with changes in annotation visual information' % (len(changed_image_xs), )) changed_gids1 = ut.take(gids_isect1, changed_image_xs) changed_gids2 = ut.take(gids_isect2, changed_image_xs) SHOW_CHANGED_GIDS = False if SHOW_CHANGED_GIDS: logger.info('gids_isect1 = %r' % (changed_gids2, )) logger.info('gids_isect2 = %r' % (changed_gids1, )) # if False: # # Debug code # import wbia.viz # import wbia.plottool as pt # gid_pairs = list(zip(changed_gids1, changed_gids2)) # pairs_iter = ut.ichunks(gid_pairs, chunksize=8) # for fnum, pairs in enumerate(pairs_iter, start=1): # pnum_ = pt.make_pnum_nextgen(nRows=len(pairs), nCols=2) # for gid1, gid2 in pairs: # wbia.viz.show_image( # ibs1, gid1, pnum=pnum_(), fnum=fnum) # wbia.viz.show_image( # ibs2, gid2, pnum=pnum_(), fnum=fnum) # Check for overlapping annotations (visual info only) in general aids1 = ibs1.annots() aids2 = ibs2.annots() # Check for overlapping annotations (visual + semantic info) in general aux_list1, aux_list2 = print_isect(aids1.uuids, aids2.uuids, 'uuids') avx_list1, avx_list2 = print_isect(aids1.visual_uuids, aids2.visual_uuids, 'vuuids') asx_list1, asx_list2 = print_isect(aids1.semantic_uuids, aids2.semantic_uuids, 'suuids') # Check which images with the same visual uuids have different semantic # uuids changed_ax_list1 = ut.setdiff_ordered(avx_list1, asx_list1) changed_ax_list2 = ut.setdiff_ordered(avx_list2, asx_list2) assert len(changed_ax_list1) == len(changed_ax_list2) assert ut.take(aids1.visual_uuids, changed_ax_list1) == ut.take(aids2.visual_uuids, changed_ax_list2) changed_aids1 = np.array(ut.take(aids1, changed_ax_list1)) changed_aids2 = np.array(ut.take(aids2, changed_ax_list2)) changed_sinfo1 = ibs1.get_annot_semantic_uuid_info(changed_aids1) changed_sinfo2 = ibs2.get_annot_semantic_uuid_info(changed_aids2) sinfo1_arr = np.array(changed_sinfo1) sinfo2_arr = np.array(changed_sinfo2) is_semantic_diff = sinfo2_arr != sinfo1_arr # Inspect semantic differences if np.any(is_semantic_diff): colxs, rowxs = np.nonzero(is_semantic_diff) colx2_rowids = ut.group_items(rowxs, colxs) prop2_rowids = ut.map_dict_keys(changed_sinfo1._fields.__getitem__, colx2_rowids) logger.info('changed_value_counts = ' + ut.repr2(ut.map_dict_vals(len, prop2_rowids))) yawx = changed_sinfo1._fields.index('yaw') # Show change in viewpoints if len(colx2_rowids[yawx]) > 0: vp_category_diff = ibsfuncs.viewpoint_diff( sinfo1_arr[yawx], sinfo2_arr[yawx]).astype(np.float) # Look for category changes # any_diff = np.floor(vp_category_diff) > 0 # _xs = np.nonzero(any_diff)[0] # _aids1 = changed_aids1.take(_xs) # _aids2 = changed_aids2.take(_xs) # Look for significant changes is_significant_diff = np.floor(vp_category_diff) > 1 significant_xs = np.nonzero(is_significant_diff)[0] significant_aids1 = changed_aids1.take(significant_xs) significant_aids2 = changed_aids2.take(significant_xs) logger.info('There are %d significant viewpoint changes' % (len(significant_aids2), )) # vt.ori_distance(sinfo1_arr[yawx], sinfo2_arr[yawx]) # zip(ibs1.get_annot_viewpoint_code(significant_aids1), # ibs2.get_annot_viewpoint_code(significant_aids2)) # logger.info('yawdiff = %r' % ) # if False: # Hack: Apply fixes # good_yaws = ibs2.get_annot_yaws(significant_aids2) # ibs1.set_annot_yaws(significant_aids1, good_yaws) # pass if False: # Debug code import wbia.viz import wbia.plottool as pt # aid_pairs = list(zip(_aids1, _aids2)) aid_pairs = list(zip(significant_aids1, significant_aids2)) pairs_iter = ut.ichunks(aid_pairs, chunksize=8) for fnum, pairs in enumerate(pairs_iter, start=1): pnum_ = pt.make_pnum_nextgen(nRows=len(pairs), nCols=2) for aid1, aid2 in pairs: wbia.viz.show_chip( ibs1, aid1, pnum=pnum_(), fnum=fnum, show_viewcode=True, nokpts=True, ) wbia.viz.show_chip( ibs2, aid2, pnum=pnum_(), fnum=fnum, show_viewcode=True, nokpts=True, ) # nAnnots_per_image1 = np.array(ibs1.get_image_num_annotations(gids1)) nAnnots_per_image2 = np.array(ibs2.get_image_num_annotations(gids2)) # images_without_annots1 = sum(nAnnots_per_image1 == 0) images_without_annots2 = sum(nAnnots_per_image2 == 0) logger.info('images_without_annots1 = %r' % (images_without_annots1, )) logger.info('images_without_annots2 = %r' % (images_without_annots2, )) nAnnots_per_image1
def show_single_coverage_mask(qreq_, cm, weight_mask_m, weight_mask, daids, fnum=None): """ DEPRICATE """ import wbia.plottool as pt import vtool as vt from wbia import viz fnum = pt.ensure_fnum(fnum) idx_list = ut.dict_take(cm.daid2_idx, daids) nPlots = len(idx_list) + 1 nRows, nCols = pt.get_square_row_cols(nPlots) pnum_ = pt.make_pnum_nextgen(nRows, nCols) pt.figure(fnum=fnum, pnum=(1, 2, 1)) # Draw coverage masks with bbox # <FlipHack> # weight_mask_m = np.fliplr(np.flipud(weight_mask_m)) # weight_mask = np.fliplr(np.flipud(weight_mask)) # </FlipHack> stacked_weights, offset_tup, sf_tup = vt.stack_images(weight_mask_m, weight_mask, return_sf=True) (woff, hoff) = offset_tup[1] wh1 = weight_mask_m.shape[0:2][::-1] wh2 = weight_mask.shape[0:2][::-1] pt.imshow( 255 * (stacked_weights), fnum=fnum, pnum=pnum_(0), title='(query image) What did match vs what should match', ) pt.draw_bbox((0, 0) + wh1, bbox_color=(0, 0, 1)) pt.draw_bbox((woff, hoff) + wh2, bbox_color=(0, 0, 1)) # Get contributing matches qaid = cm.qaid daid_list = daids fm_list = ut.take(cm.fm_list, idx_list) fs_list = ut.take(cm.fs_list, idx_list) # Draw matches for px, (daid, fm, fs) in enumerate(zip(daid_list, fm_list, fs_list), start=1): viz.viz_matches.show_matches2( qreq_.ibs, qaid, daid, fm, fs, draw_pts=False, draw_lines=True, draw_ell=False, fnum=fnum, pnum=pnum_(px), darken=0.5, ) coverage_score = score_matching_mask(weight_mask_m, weight_mask) pt.set_figtitle('score=%.4f' % (coverage_score, ))
def demo_classes(pblm): r""" CommandLine: python -m wbia.algo.verif.vsone demo_classes --saveparts --save=classes.png --clipwhite python -m wbia.algo.verif.vsone demo_classes --saveparts --save=figures/classes.png --clipwhite --dpath=~/latex/crall-iccv-2017 Example: >>> # DISABLE_DOCTEST >>> from wbia.algo.verif.vsone import * # NOQA >>> pblm = OneVsOneProblem.from_empty(defaultdb='PZ_PB_RF_TRAIN') >>> pblm.load_features() >>> pblm.load_samples() >>> pblm.build_feature_subsets() >>> pblm.demo_classes() >>> ut.show_if_requested() """ task_key = 'match_state' labels = pblm.samples.subtasks[task_key] pb_labels = pblm.samples.subtasks['photobomb_state'] classname_offset = { POSTV: 0, NEGTV: 0, INCMP: 0, } class_name = POSTV class_name = NEGTV class_name = INCMP feats = pblm.samples.X_dict['learn(sum,glob)'] offset = 0 class_to_edge = {} for class_name in labels.class_names: print('Find example of %r' % (class_name, )) # Find an example of each class (that is not a photobomb) pbflags = pb_labels.indicator_df['notpb'] flags = labels.indicator_df[class_name] assert np.all(pbflags.index == flags.index) flags = flags & pbflags ratio = feats['sum(ratio)'] if class_name == INCMP: # flags &= feats['global(delta_yaw)'] > 3 flags &= feats['global(delta_view)'] > 2 # flags &= feats['sum(ratio)'] > 0 if class_name == NEGTV: low = ratio[flags].max() flags &= feats['sum(ratio)'] >= low if class_name == POSTV: low = ratio[flags].median() / 2 high = ratio[flags].median() flags &= feats['sum(ratio)'] < high flags &= feats['sum(ratio)'] > low # flags &= pblm.samples.simple_scores[flags]['score_lnbnn_1vM'] > 0 idxs = np.where(flags)[0] print('Found %d candidates' % (len(idxs))) offset = classname_offset[class_name] idx = idxs[offset] series = labels.indicator_df.iloc[idx] assert series[class_name] edge = series.name class_to_edge[class_name] = edge import wbia.plottool as pt import wbia.guitool as gt gt.ensure_qapp() pt.qtensure() fnum = 1 pt.figure(fnum=fnum, pnum=(1, 3, 1)) pnum_ = pt.make_pnum_nextgen(1, 3) # classname_alias = { # POSTV: 'positive', # NEGTV: 'negative', # INCMP: 'incomparable', # } ibs = pblm.infr.ibs for class_name in class_to_edge.keys(): edge = class_to_edge[class_name] aid1, aid2 = edge # alias = classname_alias[class_name] print('class_name = %r' % (class_name, )) annot1 = ibs.annots([aid1])[0]._make_lazy_dict() annot2 = ibs.annots([aid2])[0]._make_lazy_dict() vt.matching.ensure_metadata_normxy(annot1) vt.matching.ensure_metadata_normxy(annot2) match = vt.PairwiseMatch(annot1, annot2) cfgdict = pblm.hyper_params.vsone_match.asdict() match.apply_all(cfgdict) pt.figure(fnum=fnum, pnum=pnum_()) match.show(show_ell=False, show_ori=False)
def compare_featscores(): r""" CommandLine: wbia --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,lnbnn],top_percent=[None,.5,.1] -a timectrl \ -p default:K=[1,2],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow wbia --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5] -a timectrl \ -p default:K=[1],normalizer_rule=name,sv_on=[True,False] \ --save featscore{db}.png --figsize=13,10 --diskshow wbia --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=1,normalizer_rule=name --db PZ_Master1 \ --save featscore{db}.png --figsize=13,13 --diskshow wbia --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=1,normalizer_rule=name --db GZ_ALL \ --save featscore{db}.png --figsize=13,13 --diskshow wbia --tf compare_featscores --db GIRM_Master1 \ --nfscfg ':disttype=fg,L2_sift,normdist,lnbnn' \ -a timectrl -p default:K=1,normalizer_rule=name \ --save featscore{db}.png --figsize=13,13 wbia --tf compare_featscores --nfscfg :disttype=[L2_sift,normdist,lnbnn] \ -a timectrl -p default:K=[1,2,3],normalizer_rule=name,sv_on=False \ --db PZ_Master1 --save featscore{db}.png \ --dpi=128 --figsize=15,20 --diskshow wbia --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_MTEST wbia --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GZ_ALL wbia --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db PZ_Master1 wbia --tf compare_featscores --show --nfscfg :disttype=[L2_sift,normdist] -a timectrl -p :K=1 --db GIRM_Master1 wbia --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \ -p default:K=[1],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow wbia --tf compare_featscores --db PZ_MTEST \ --nfscfg :disttype=[L2_sift,normdist,lnbnn],top_percent=[None,.5,.2] -a timectrl \ -p default:K=[1],normalizer_rule=name \ --save featscore{db}.png --figsize=13,20 --diskshow Example: >>> # DISABLE_DOCTEST >>> from wbia.unstable.scorenorm import * # NOQA >>> result = compare_featscores() >>> print(result) >>> ut.quit_if_noshow() >>> import wbia.plottool as pt >>> ut.show_if_requested() """ import wbia.plottool as pt import wbia nfs_cfg_list = NormFeatScoreConfig.from_argv_cfgs() learnkw = {} ibs, testres = wbia.testdata_expts(defaultdb='PZ_MTEST', a=['default'], p=['default:K=1']) logger.info('nfs_cfg_list = ' + ut.repr3(nfs_cfg_list)) encoder_list = [] lbl_list = [] varied_nfs_lbls = ut.get_varied_cfg_lbls(nfs_cfg_list) varied_qreq_lbls = ut.get_varied_cfg_lbls(testres.cfgdict_list) # varies_qreq_lbls # func = ut.cached_func(cache_dir='.')(learn_featscore_normalizer) for datakw, nlbl in zip(nfs_cfg_list, varied_nfs_lbls): for qreq_, qlbl in zip(testres.cfgx2_qreq_, varied_qreq_lbls): lbl = qlbl + ' ' + nlbl cfgstr = '_'.join([datakw.get_cfgstr(), qreq_.get_full_cfgstr()]) try: encoder = vt.ScoreNormalizer() encoder.load(cfgstr=cfgstr) except IOError: logger.info('datakw = %r' % (datakw, )) encoder = learn_featscore_normalizer(qreq_, datakw, learnkw) encoder.save(cfgstr=cfgstr) encoder_list.append(encoder) lbl_list.append(lbl) fnum = 1 # next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list), nCols=3) next_pnum = pt.make_pnum_nextgen(nRows=len(encoder_list) + 1, nCols=3, start=3) iconsize = 94 if len(encoder_list) > 3: iconsize = 64 icon = qreq_.ibs.get_database_icon(max_dsize=(None, iconsize), aid=qreq_.qaids[0]) score_range = (0, 0.6) for encoder, lbl in zip(encoder_list, lbl_list): # encoder.visualize(figtitle=encoder.get_cfgstr(), with_prebayes=False, with_postbayes=False) encoder._plot_score_support_hist(fnum, pnum=next_pnum(), titlesuf='\n' + lbl, score_range=score_range) encoder._plot_prebayes(fnum, pnum=next_pnum()) encoder._plot_roc(fnum, pnum=next_pnum()) if icon is not None: pt.overlay_icon(icon, coords=(1, 0), bbox_alignment=(1, 0)) nonvaried_lbl = ut.get_nonvaried_cfg_lbls(nfs_cfg_list)[0] figtitle = qreq_.__str__() + '\n' + nonvaried_lbl pt.set_figtitle(figtitle) pt.adjust_subplots(hspace=0.5, top=0.92, bottom=0.08, left=0.1, right=0.9) pt.update_figsize() pt.plt.tight_layout()