コード例 #1
0
def experiments_voting(**kwargs):

    experiments_voting_initialize()
    voting_data()

    embed = dict(globals(), **locals())
    return appf.template('experiments', 'voting', **embed)
コード例 #2
0
def demo(*args, **kwargs):
    # Return HTML

    embedded = dict(globals(), **locals())
    return appf.template(None, 'demo', **embedded)
コード例 #3
0
def experiments_interest(dbtag1='demo-jasonp', dbtag2='demo-chuck', **kwargs):
    from uuid import UUID
    from wbia.other.detectfuncs import general_overlap, general_parse_gt

    dbtag1 = str(dbtag1)
    dbtag2 = str(dbtag2)
    ibs1 = experiment_init_db(dbtag1)
    ibs2 = experiment_init_db(dbtag2)
    dbdir1 = ibs1.dbdir
    dbdir2 = ibs2.dbdir

    gid_list1 = ibs1.get_valid_gids(reviewed=1)
    gid_list2 = ibs2.get_valid_gids(reviewed=1)

    gt_dict1 = general_parse_gt(ibs1, gid_list1)
    gt_dict2 = general_parse_gt(ibs2, gid_list2)

    uuid_list1 = sorted(map(str, ibs1.get_image_uuids(gid_list1)))
    uuid_list2 = sorted(map(str, ibs2.get_image_uuids(gid_list2)))

    gid_pair_list = []
    index1, index2 = 0, 0
    stats_global = {
        'disagree_interest1': 0,
        'disagree_interest2': 0,
        'annot1': 0,
        'annot2': 0,
    }
    while index1 < len(uuid_list1) or index2 < len(uuid_list2):
        uuid1 = UUID(uuid_list1[index1]) if index1 < len(uuid_list1) else None
        uuid2 = UUID(uuid_list2[index2]) if index2 < len(uuid_list2) else None

        if uuid1 is None and uuid2 is None:
            break

        gid1 = ibs1.get_image_gids_from_uuid(uuid1)
        gid2 = ibs2.get_image_gids_from_uuid(uuid2)

        logger.info('%s %s' % (
            index1,
            index2,
        ))
        stats = None
        if uuid1 is not None and uuid2 is not None:
            if uuid1 == uuid2:
                gt_list1 = gt_dict1[uuid1]
                gt_list2 = gt_dict2[uuid2]

                stats_global['annot1'] += len(gt_list1)
                stats_global['annot2'] += len(gt_list2)

                overlap = general_overlap(gt_list1, gt_list2)
                if 0 in overlap.shape:
                    index_list1 = []
                    index_list2 = []
                else:
                    index_list1 = np.argmax(overlap, axis=1)
                    index_list2 = np.argmax(overlap, axis=0)

                pair_list1 = set(enumerate(index_list1))
                pair_list2 = set(enumerate(index_list2))
                pair_list2 = set([_[::-1] for _ in pair_list2])
                pair_union = pair_list1 | pair_list2
                pair_intersect = pair_list1 & pair_list2
                pair_diff_sym = pair_list1 ^ pair_list2
                pair_diff1 = pair_list1 - pair_list2
                pair_diff2 = pair_list2 - pair_list1

                message_list = []
                if len(gt_list1) > 0 and len(gt_list2) == 0:
                    message_list.append('Jason has annotations, Chuck none')
                if len(gt_list1) == 0 and len(gt_list2) > 0:
                    message_list.append('Chuck has annotations, Jason none')
                if len(pair_diff1) > 0 and len(pair_diff2) == 0:
                    message_list.append('Jason has additional annotations')
                if len(pair_diff1) == 0 and len(pair_diff2) > 0:
                    message_list.append('Chuck has additional annotations')
                if len(pair_diff1) > 0 and len(pair_diff2) > 0:
                    message_list.append('Assignment mismatch')

                disagree = 0
                for index1_, index2_ in pair_intersect:
                    gt1 = gt_list1[index1_]
                    gt2 = gt_list2[index2_]
                    interest1 = gt1['interest']
                    interest2 = gt2['interest']

                    if interest1 != interest2:
                        disagree += 1
                        if interest1 > interest2:
                            stats_global['disagree_interest1'] += 1
                        if interest2 > interest1:
                            stats_global['disagree_interest2'] += 1

                if disagree > 0:
                    message_list.append('Interest mismatch')

                stats = {
                    'num_annot1': len(gt_list1),
                    'num_annot2': len(gt_list2),
                    'num_interest1':
                    len([_ for _ in gt_list1 if _['interest']]),
                    'num_interest2':
                    len([_ for _ in gt_list2 if _['interest']]),
                    'conflict': len(message_list) > 0,
                    'message': '<br/>'.join(message_list),
                }
            else:
                if uuid1 < uuid2:
                    gid2 = None
                else:
                    gid1 = None

        gid_pair_list.append((gid1, gid2, stats))
        if gid1 is not None:
            index1 += 1
        if gid2 is not None:
            index2 += 1

    embed = dict(globals(), **locals())
    return appf.template('experiments', 'interest', **embed)
コード例 #4
0
def view_experiments(**kwargs):
    return appf.template('experiments')
コード例 #5
0
def review_detection_html(
    ibs,
    image_uuid,
    result_list,
    callback_url,
    callback_method='POST',
    include_jquery=False,
    config=None,
):
    """
    Return the detection review interface for a particular image UUID and a list of results for that image.

    Args:
        image_uuid (UUID): the UUID of the image you want to review detections for
        result_list (list of dict): list of detection results returned by the detector
        callback_url (str): URL that the review form will submit to (action) when
            the user is complete with their review
        callback_method (str): HTTP method the review form will submit to (method).
            Defaults to 'POST'

    Returns:
        template (html): json response with the detection web interface in html

    RESTful:
        Method: GET
        URL:    /api/review/detect/cnn/yolo/
    """
    ibs.web_check_uuids(image_uuid_list=[image_uuid])
    gid = ibs.get_image_gids_from_uuid(image_uuid)

    if gid is None:
        return 'INVALID IMAGE UUID'

    default_config = {
        'autointerest': False,
        'interest_bypass': False,
        'metadata': True,
        'metadata_viewpoint': False,
        'metadata_quality': False,
        'metadata_flags': True,
        'metadata_flags_aoi': True,
        'metadata_flags_multiple': False,
        'metadata_species': True,
        'metadata_label': True,
        'metadata_quickhelp': True,
        'parts': False,
        'modes_rectangle': True,
        'modes_diagonal': True,
        'modes_diagonal2': True,
        'staged': False,
    }

    if config is not None:
        default_config.update(config)

    gpath = ibs.get_image_thumbpath(gid, ensure_paths=True, draw_annots=False)
    image = ibs.get_images(gid)
    image_src = appf.embed_image_html(image)
    width, height = ibs.get_image_sizes(gid)

    if width <= 0 or width is None or height <= 0 or height is None:
        vals = (
            image_uuid,
            width,
            height,
        )
        raise IOError(
            'Image %r for review has either no width or no height (w = %s, h = %s)' % vals
        )

    annotation_list = []
    for result in result_list:
        quality = result.get('quality', None)
        if quality in [-1, None]:
            quality = 0
        elif quality <= 2:
            quality = 1
        elif quality > 2:
            quality = 2

        viewpoint1 = result.get('viewpoint1', None)
        viewpoint2 = result.get('viewpoint2', None)
        viewpoint3 = result.get('viewpoint3', None)

        if viewpoint1 is None and viewpoint2 is None and viewpoint3 is None:
            viewpoint = result.get('viewpoint', None)
            viewpoint1, viewpoint2, viewpoint3 = appf.convert_viewpoint_to_tuple(
                viewpoint
            )

        annotation_list.append(
            {
                'id': result.get('id', None),
                'left': 100.0 * (result.get('left', result['xtl']) / width),
                'top': 100.0 * (result.get('top', result['ytl']) / height),
                'width': 100.0 * (result['width'] / width),
                'height': 100.0 * (result['height'] / height),
                'species': result.get('species', result['class']),
                'theta': result.get('theta', 0.0),
                'viewpoint1': viewpoint1,
                'viewpoint2': viewpoint2,
                'viewpoint3': viewpoint3,
                'quality': quality,
                'multiple': 'true' if result.get('multiple', None) == 1 else 'false',
                'interest': 'true' if result.get('interest', None) == 1 else 'false',
            }
        )

    species = KEY_DEFAULTS[SPECIES_KEY]

    root_path = dirname(abspath(__file__))
    css_file_list = [
        ['include', 'jquery-ui', 'jquery-ui.min.css'],
        ['include', 'jquery.ui.rotatable', 'jquery.ui.rotatable.css'],
        ['css', 'style.css'],
    ]
    json_file_list = [
        ['include', 'jquery-ui', 'jquery-ui.min.js'],
        ['include', 'jquery.ui.rotatable', 'jquery.ui.rotatable.min.js'],
        ['include', 'bbox_annotator_percent.js'],
        ['javascript', 'script.js'],
        ['javascript', 'turk-detection.js'],
    ]

    if include_jquery:
        json_file_list = [['javascript', 'jquery.min.js']] + json_file_list

    EMBEDDED_CSS = ''
    EMBEDDED_JAVASCRIPT = ''

    css_template_fmtstr = '<style type="text/css" ia-dependency="css">%s</style>\n'
    json_template_fmtstr = (
        '<script type="text/javascript" ia-dependency="javascript">%s</script>\n'
    )
    for css_file in css_file_list:
        css_filepath_list = [root_path, 'static'] + css_file
        with open(join(*css_filepath_list)) as css_file:
            EMBEDDED_CSS += css_template_fmtstr % (css_file.read(),)

    for json_file in json_file_list:
        json_filepath_list = [root_path, 'static'] + json_file
        with open(join(*json_filepath_list)) as json_file:
            EMBEDDED_JAVASCRIPT += json_template_fmtstr % (json_file.read(),)

    species_rowids = ibs._get_all_species_rowids()
    species_nice_list = ibs.get_species_nice(species_rowids)

    combined_list = sorted(zip(species_nice_list, species_rowids))
    species_nice_list = [combined[0] for combined in combined_list]
    species_rowids = [combined[1] for combined in combined_list]

    species_text_list = ibs.get_species_texts(species_rowids)
    species_list = list(zip(species_nice_list, species_text_list))
    species_list = [('Unspecified', const.UNKNOWN)] + species_list

    # Collect mapping of species to parts
    aid_list = ibs.get_valid_aids()
    part_species_rowid_list = ibs.get_annot_species_rowids(aid_list)
    part_species_text_list = ibs.get_species_texts(part_species_rowid_list)
    part_rowids_list = ibs.get_annot_part_rowids(aid_list)
    part_types_list = map(ibs.get_part_types, part_rowids_list)

    zipped = list(zip(part_species_text_list, part_types_list))
    species_part_dict = {const.UNKNOWN: set([])}
    for part_species_text, part_type_list in zipped:
        if part_species_text not in species_part_dict:
            species_part_dict[part_species_text] = set([const.UNKNOWN])
        for part_type in part_type_list:
            species_part_dict[part_species_text].add(part_type)
            species_part_dict[const.UNKNOWN].add(part_type)
    # Add any images that did not get added because they aren't assigned any annotations
    for species_text in species_text_list:
        if species_text not in species_part_dict:
            species_part_dict[species_text] = set([const.UNKNOWN])
    for key in species_part_dict:
        species_part_dict[key] = sorted(list(species_part_dict[key]))
    species_part_dict_json = json.dumps(species_part_dict)

    orientation_flag = '0'
    if species is not None and 'zebra' in species:
        orientation_flag = '1'

    settings_key_list = [
        ('ia-detection-setting-orientation', orientation_flag),
        ('ia-detection-setting-parts-assignments', '1'),
        ('ia-detection-setting-toggle-annotations', '1'),
        ('ia-detection-setting-toggle-parts', '0'),
        ('ia-detection-setting-parts-show', '0'),
        ('ia-detection-setting-parts-hide', '0'),
    ]

    settings = {
        settings_key: request.cookies.get(settings_key, settings_default) == '1'
        for (settings_key, settings_default) in settings_key_list
    }

    return appf.template(
        'turk',
        'detection_insert',
        gid=gid,
        refer_aid=None,
        species=species,
        image_path=gpath,
        image_src=image_src,
        config=default_config,
        settings=settings,
        annotation_list=annotation_list,
        species_list=species_list,
        species_part_dict_json=species_part_dict_json,
        callback_url=callback_url,
        callback_method=callback_method,
        EMBEDDED_CSS=EMBEDDED_CSS,
        EMBEDDED_JAVASCRIPT=EMBEDDED_JAVASCRIPT,
    )