コード例 #1
0
def examples_page():
    # Find the example dataset
    example_dataset = db.get_example_dataset()
    if example_dataset is None:
        set_error('No example dataset defined.')
        return redirect('/')
    return redirect('/dataset/%s' % example_dataset['_id'])
コード例 #2
0
def delete_dataset(dataset_id_str):
    dataset_id = ObjectId(dataset_id_str)
    dataset_info = db.get_dataset_by_id(dataset_id)
    if dataset_info is None:
        return render_template("404.html")
    if db.is_readonly_dataset(dataset_info):
        set_error('Dataset is protected.')
        return redirect('/dataset/' + str(dataset_info['_id']))
    db.delete_dataset(dataset_id)
    set_notice('Dataset "%s" deleted.' % dataset_info['name'])
    return redirect('/')
コード例 #3
0
def add_dataset():
    # Add by name. Forward to newly created dataset
    dataset_name = request.form['dataset_name'].strip()
    if dataset_name == '':
        set_error('Invalid dataset name.')
        return redirect('/')
    dataset_info = db.get_dataset_by_name(dataset_name)
    if dataset_info is not None:
        set_error('Duplicate dataset name.')
        return redirect('/')
    dataset_info = db.add_dataset(dataset_name, user_id=get_current_user_id())
    return redirect('/dataset/' + str(dataset_info['_id']) + '?new=true')
コード例 #4
0
def add_uploaded_image(dataset_id, full_fn, filename):
    # Get some image info
    try:
        im = Image.open(full_fn)
    except:
        print 'Invalid image file: %s' % full_fn
        set_error('Could not load image. Invalid / Upload error?')
        return None
    # Add DB entry (after file save to worker can pick it up immediately)
    entry = db.add_sample(name=filename, filename=os.path.basename(full_fn), size=im.size, dataset_id=dataset_id)
    # Return added entry
    return entry
コード例 #5
0
def save_annotations(sid):
    sample_id = ObjectId(sid)
    sample_entry = db.get_sample_by_id(sample_id)
    # Caution: Load dataset id from DB (not from form), for security of the readonly check!
    # dataset_id = ObjectId(request.form['dataset_id'].strip())
    dataset_id = sample_entry['dataset_id']
    readonly = db.is_readonly_dataset_id(dataset_id)
    if readonly:
        set_error('Dataset is protected.')
        return redirect('/dataset/' + str(dataset_id))
    is_differential = request.args.get('differential')
    if is_differential:
        base_annotations = db.get_machine_annotations(sample_id)
        redirect_params = '?differential=1'
    else:
        base_annotations = None
        redirect_params = ''
    # Save annotations for sample
    annotations = json.loads(request.form['annotations'].strip())
    margin = int(request.form['margin'].strip())
    print 'Saving annotations.', sid, margin, annotations
    db.set_human_annotation(sample_id,
                            get_current_user_id(),
                            annotations,
                            margin,
                            base_annotations=base_annotations)
    # Forward either to info page or to annotation of next un-annotated entry in DB if found
    annotate_next = ("save_and_continue" in request.form)
    if annotate_next:
        next_sample_id = db.get_next_sample_id(dataset_id,
                                               sample_id,
                                               annotated=False)
        if next_sample_id is not None:
            return redirect('/annotate/' + str(next_sample_id) +
                            redirect_params)
        else:
            set_error('No more samples to annotate.')
            return redirect('/dataset/' + str(dataset_id))
    # Nothing
    return redirect('/info/' + sid)
コード例 #6
0
def delete_entry(str_id):
    # For return path
    id = ObjectId(str_id)
    sample = db.get_sample_by_id(id)
    if sample is None:
        set_error('Item to delete not found.')
        return redirect('/')
    dataset_id = sample['dataset_id']
    readonly = db.is_readonly_dataset_id(dataset_id)
    sample_index, sample_count, prev_sample_id, next_sample_id = db.get_sample_index(dataset_id, id)
    if readonly:
        set_error('Dataset is protected.')
    elif db.delete_sample(id):
        set_notice('Item deleted.')
    else:
        set_error('Could not delete item.')
    # Redirect: To next sample in set if it exists. Otherwise to the dataset page.
    if next_sample_id is not None and next_sample_id != id:
        # Return to same kind of page (info/annotation/diff_annotation)
        is_annotation = request.args.get('annotate')
        is_differential = request.args.get('differential')
        if is_annotation:
            suffix = '?differential=1' if is_differential else ''
            return redirect('/annotate/' + str(next_sample_id) + suffix)
        else:
            return redirect('/info/' + str(next_sample_id))
    else:
        return redirect('/dataset/' + str(dataset_id))
コード例 #7
0
def dataset_info(dataset_id_str):
    print 'request.method', request.method
    if dataset_id_str == 'new' and request.method == 'POST':
        dataset_id = None
        dataset_info = None
        new_dataset_zoom = request.form['size']
    else:
        dataset_id = ObjectId(dataset_id_str)
        dataset_info = db.get_dataset_by_id(dataset_id)
        new_dataset_zoom = None
        if dataset_info is None:
            return render_template("404.html")
    if request.method == 'POST':
        # File upload
        if dataset_info is not None:
            if db.is_readonly_dataset(dataset_info):
                set_error('Dataset is protected.')
                return redirect('/dataset/' + dataset_id_str)
        return upload_file(dataset_id, image_zoom=new_dataset_zoom)
    enqueued = db.get_unprocessed_samples(dataset_id=dataset_id)
    finished = db.get_processed_samples(dataset_id=dataset_id)
    for i, sample in enumerate(finished):
        sample['machine_distance'] = 1.0 / max(
            [0.001, sqrt(float(sample['machine_position_count']))])
        sample['index'] = i
    errored = db.get_error_samples(dataset_id=dataset_id)
    # Get request data
    return render_template("dataset.html",
                           dataset_name=dataset_info['name'],
                           dataset_id=dataset_id_str,
                           enqueued=enqueued,
                           finished=finished,
                           errored=errored,
                           status=db.get_status('worker'),
                           readonly=db.is_readonly_dataset(dataset_info),
                           error=pop_last_error(),
                           dataset_user=dataset_info.get('user'),
                           image_zoom=dataset_info.get('image_zoom',
                                                       'default'))
コード例 #8
0
def admin_retrain():
    data = request.form
    model_name = data['train_model_name']
    # Race condition here; but it's just for the admin page anyway
    if re.match('^[\w-]+$', model_name) is None:
        set_error(
            'Invalid model name. Must be non-empty, only alphanumeric characters, dashes and underscores.'
        )
        return redirect('/admin')
    if db.get_model_by_name(model_name):
        set_error('Model exists. Please pick a different name.')
        return redirect('/admin')
    # Validate tag
    tag_name = data['train_label']
    dsets = list(db.get_datasets_by_tag(tag_name))
    if not len(dsets):
        set_error('Train tag does not match any datasets.')
        return redirect('/admin')
    is_primary = (data.get('train_primary') == 'on')
    dataset_only = (data.get('dataset_only') == 'on')
    train_sample_limit_s = data['train_sample_limit']
    if len(train_sample_limit_s):
        try:
            train_sample_limit = int(train_sample_limit_s)
            if train_sample_limit <= 0:
                raise ValueError()
        except ValueError as e:
            set_error('Invalid sample limit. Either leave empty for no limit, '
                      'or supply a valid number greater than zero.')
            return redirect('/admin')
    else:
        train_sample_limit = None
    # Add scheduled model training to DB. Will be picked up by worker.
    rec = db.add_model(model_name=model_name,
                       margin=96,
                       sample_limit=train_sample_limit,
                       train_tag=tag_name,
                       scheduled_primary=is_primary,
                       status=db.model_status_scheduled,
                       dataset_only=dataset_only)
    set_notice('Model training scheduled.')
    return redirect('/model/' + str(rec['_id']))
コード例 #9
0
def do_claim_dataset(dataset_id_str, ignore_errors):
    dataset_id = ObjectId(dataset_id_str)
    if current_user is None:
        if ignore_errors:
            return
        set_error('Not logged in.')
        return redirect('/dataset/' + dataset_id_str)
    dataset = db.get_dataset_by_id(dataset_id)
    if dataset is None:
        if ignore_errors:
            return
        set_error('Dataset not found.')
        return redirect('/user_datasets')
    if dataset.get('user') is not None:
        if ignore_errors:
            return
        set_error('Dataset already owned by %s.' %
                  dataset['user'].get('email'))
        return redirect('/dataset/' + dataset_id_str)
    db.set_dataset_user(dataset_id, current_user.id)
    return redirect('/user_datasets')
コード例 #10
0
def dataset_info(dataset_id_str):
    print 'request.method', request.method
    new_dataset_threshold_prob = None
    new_allow_reuse = False
    if dataset_id_str == 'new':
        print 'Creating new dataset'
        if request.method != 'POST':
            return redirect('/')
        dataset_id = None
        dataset_info = None
        new_dataset_zoom = request.form['size']
        print 'Threshold prob:'
        print request.form['threshold']
        try:
            v = float(request.form['threshold'])
            new_dataset_threshold_prob = min(max(v, 0.5), 1.0)
            print 'Specified thresh prob:', new_dataset_threshold_prob
        except ValueError:
            print 'Invalid threshold. Ignored.'
        try:
            new_allow_reuse = bool(request.form.get('reuseCheck'))
            print 'Specified allow reuse:', request.form.get(
                'reuseCheck'), new_allow_reuse
        except ValueError:
            print 'Invalid reuse setting. Ignored.'
    else:
        dataset_id = ObjectId(dataset_id_str)
        db.access_dataset(dataset_id)
        dataset_info = db.get_dataset_by_id(dataset_id)
        new_dataset_zoom = None
        if dataset_info is None:
            return render_template("404.html")
    if request.method == 'POST':
        # File upload
        if dataset_info is not None:
            if db.is_readonly_dataset(dataset_info):
                set_error('Dataset is protected.')
                return redirect('/dataset/' + dataset_id_str)
        return upload_file(dataset_id,
                           image_zoom=new_dataset_zoom,
                           threshold_prob=new_dataset_threshold_prob,
                           allow_reuse=new_allow_reuse)
    enqueued = db.get_unprocessed_samples(dataset_id=dataset_id)
    finished = db.get_processed_samples(dataset_id=dataset_id)
    for i, sample in enumerate(finished):
        sample['machine_distance'] = 1.0 / max(
            [0.001, sqrt(float(sample['machine_position_count']))])
        sample['index'] = i
    errored = db.get_error_samples(dataset_id=dataset_id)
    threshold_prob = round(dataset_info.get('threshold_prob')
                           or fc8_to_prob(default_prob_threshold),
                           ndigits=3)
    # Get request data
    return render_template("dataset.html",
                           dataset_name=dataset_info['name'],
                           dataset_id=dataset_id_str,
                           enqueued=enqueued,
                           finished=finished,
                           errored=errored,
                           status=db.get_status('worker'),
                           readonly=db.is_readonly_dataset(dataset_info),
                           error=pop_last_error(),
                           dataset_user=dataset_info.get('user'),
                           image_zoom=dataset_info.get('image_zoom',
                                                       'default'),
                           threshold_prob=threshold_prob)