def tanh(op: Tanh, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] y = variables_layout[op.outputs["y"]] assert x.variable.shape == y.variable.shape assert x.variable.order == y.variable.order meta_injector = MetaInjector() meta_injector.register({ "tanh_X_offset": x.offset, "tanh_Y_offset": y.offset, "tanh_N": y.variable.size }) name_injector = KernelNameInjector(op) source = template source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def axiswise_bias_same_order(op: AxiswiseBias, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] b = constants_layout[op.inputs["b"]] y = variables_layout[op.outputs["y"]] target_axis_index = x.variable.order.axes_dict[op.axis] D1 = int(np.prod(x.variable.shape[:target_axis_index])) D2 = x.variable.shape[target_axis_index] D3 = int(np.prod(x.variable.shape[target_axis_index + 1:])) meta_injector = MetaInjector() meta_injector.register({ "axiswise_bias_X_offset": x.offset, "axiswise_bias_B_offset": b.offset, "axiswise_bias_Y_offset": y.offset, "axiswise_bias_D1": D1, "axiswise_bias_D2": D2, "axiswise_bias_D3": D3 }) name_injector = KernelNameInjector(op) source = generate_template_same_order(D1, D3) source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def scalar_affine(op: ScalarAffine, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] y = variables_layout[op.outputs["y"]] assert x.variable.shape == y.variable.shape meta_injector = MetaInjector() meta_injector.register({ "affine_transform_X_offset": x.offset, "affine_transform_Y_offset": y.offset, "affine_transform_N": y.variable.size, "affine_transform_scale": float(op.scale), "affine_transform_bias": float(op.bias) }) name_injector = KernelNameInjector(op) source = template source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def max_pooling_2d(op: MaxPooling2D, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] y = variables_layout[op.outputs["y"]] assert x.variable.order == OrderNHWC assert y.variable.order == OrderNHWC meta_injector = MetaInjector() meta_injector.register({ "max_pooling_2d_X_offset": x.offset, "max_pooling_2d_Y_offset": y.offset, "max_pooling_2d_N": x.variable.shape_dict[Axis.N], "max_pooling_2d_H1": x.variable.shape_dict[Axis.H], "max_pooling_2d_W1": x.variable.shape_dict[Axis.W], "max_pooling_2d_C": x.variable.shape_dict[Axis.C], "max_pooling_2d_H2": y.variable.shape_dict[Axis.H], "max_pooling_2d_W2": y.variable.shape_dict[Axis.W], "max_pooling_2d_K": op.parameters["ksize"][0], "max_pooling_2d_S": op.parameters["stride"][0], "max_pooling_2d_P": op.parameters["padding"][0], }) name_injector = KernelNameInjector(op) source = template source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def axiswise_scale(op: AxiswiseScale, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] s = constants_layout[op.inputs["s"]] y = variables_layout[op.outputs["y"]] assert x.variable.order == OrderNC or x.variable.order == OrderNHWC or x.variable.order == OrderHWNC assert y.variable.order == OrderNC or y.variable.order == OrderNHWC or y.variable.order == OrderHWNC assert op.parameters[ "axis"] == Axis.C, "[WebGPU] AxiswiseScale supports only channelwise bias." meta_injector = MetaInjector() meta_injector.register({ "axiswise_scale_X_offset": x.offset, "axiswise_scale_Y_offset": y.offset, "axiswise_scale_S_offset": s.offset, "axiswise_scale_N": y.variable.size, "axiswise_scale_C": y.variable.shape_dict[Axis.C], }) name_injector = KernelNameInjector(op) source = template source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def elementwise_sum(op: AxiswiseScale, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x0 = variables_layout[op.inputs["x0"]] x1 = variables_layout[op.inputs["x1"]] y = variables_layout[op.outputs["y"]] assert len(op.inputs) == 2, "[WebGPU] ElementwiseSum operator currently supported only 2 inputs." assert x0.variable.shape == x1.variable.shape == y.variable.shape meta_injector = MetaInjector() meta_injector.register({ "elementwise_sum_X0_offset": x0.offset, "elementwise_sum_X1_offset": x1.offset, "elementwise_sum_Y_offset": y.offset, "elementwise_sum_N": y.variable.size }) inline_injector = InlineInjector(op) name_injector = KernelNameInjector(op) source = generate_template(y.variable.size, inline_injector.has_inline) source = meta_injector.inject(source) source = inline_injector.inject(source) source = name_injector.inject(source) kernel = Kernel( {name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer ) return [kernel]
def local_response_normalization_general( op: LocalResponseNormalization, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] y = variables_layout[op.outputs["y"]] target_axis = Axis.C x_shape = x.variable.shape y_strides = [] stride = 1 for s in reversed(y.variable.shape): y_strides.insert(0, stride) stride *= s x_stride_in_y = [ y_strides[y.variable.order.axes_dict[axis]] for axis in x.variable.order.axes ] meta_injector = MetaInjector() meta_injector.register({ "local_response_normalization_X_offset": x.offset, "local_response_normalization_Y_offset": y.offset, "local_response_normalization_D": x.variable.ndim, "local_response_normalization_d_target": x.variable.order.axes_dict[target_axis], "local_response_normalization_x_shape": np.array(x_shape, dtype=np.int32).tobytes(), "local_response_normalization_x_stride_in_y": np.array(x_stride_in_y, dtype=np.int32).tobytes(), "local_response_normalization_param_half_n": int(op.parameters["n"] // 2), "local_response_normalization_param_k": float(op.parameters["k"]), "local_response_normalization_param_alpha": float(op.parameters["alpha"]), "local_response_normalization_param_minus_beta": float(-op.parameters["beta"]) }) name_injector = KernelNameInjector(op) source = template_general source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def axiswise_bias_general(op: AxiswiseBias, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] b = constants_layout[op.inputs["b"]] y = variables_layout[op.outputs["y"]] x_shape = x.variable.shape y_strides = [] stride = 1 for s in reversed(y.variable.shape): y_strides.insert(0, stride) stride *= s x_stride_in_y = [ y_strides[y.variable.order.axes_dict[axis]] for axis in x.variable.order.axes ] meta_injector = MetaInjector() meta_injector.register({ "axiswise_bias_X_offset": x.offset, "axiswise_bias_B_offset": b.offset, "axiswise_bias_Y_offset": y.offset, "axiswise_bias_D": x.variable.ndim, "axiswise_bias_d_target": x.variable.order.axes_dict[op.axis], "axiswise_bias_x_shape": np.array(x_shape, dtype=np.int32).tobytes(), "axiswise_bias_x_stride_in_y": np.array(x_stride_in_y, dtype=np.int32).tobytes(), }) name_injector = KernelNameInjector(op) source = template_general source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def im2col(op: Im2Col, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: im = variables_layout[op.inputs["im"]] col = variables_layout[op.outputs["col"]] assert im.variable.order == OrderNHWC assert col.variable.order == OrderNHWC or col.variable.order == OrderCNHW N = im.variable.shape_dict[Axis.N] C1 = im.variable.shape_dict[Axis.C] H1 = im.variable.shape_dict[Axis.H] W1 = im.variable.shape_dict[Axis.W] H1P = H1 + 2 * op.PH W1P = W1 + 2 * op.PW meta_injector = MetaInjector() meta_injector.register({ "im2col_im_offset": im.offset, "im2col_col_offset": col.offset, "im2col_N": col.variable.shape_dict[Axis.N], "im2col_C1": C1, "im2col_H1": im.variable.shape_dict[Axis.H], "im2col_W1": im.variable.shape_dict[Axis.W], "im2col_H2": col.variable.shape_dict[Axis.H], "im2col_W2": col.variable.shape_dict[Axis.W], "im2col_KH": op.KH, "im2col_KW": op.KW, "im2col_SH": op.SH, "im2col_SW": op.SW, "im2col_PH": op.PH, "im2col_PW": op.PW, }) name_injector = KernelNameInjector(op) source = template_CNHW if col.variable.order == OrderCNHW else generate_template_NHWC( op.SH, op.SW, C1) source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(N * H1P * W1P, 1, 1), GPUSize(64, 1, 1), meta_injector.buffer) return [kernel]
def local_response_normalization_same_order( op: LocalResponseNormalization, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] y = variables_layout[op.outputs["y"]] target_axis = Axis.C # FIXME target_axis_index = x.variable.order.axes_dict[target_axis] D1 = int(np.prod(x.variable.shape[:target_axis_index])) D2 = x.variable.shape[target_axis_index] D3 = int(np.prod(x.variable.shape[target_axis_index + 1:])) meta_injector = MetaInjector() meta_injector.register({ "local_response_normalization_X_offset": x.offset, "local_response_normalization_Y_offset": y.offset, "local_response_normalization_D1": D1, "local_response_normalization_D2": D2, "local_response_normalization_D3": D3, "local_response_normalization_param_half_n": int(op.parameters["n"] // 2), "local_response_normalization_param_k": float(op.parameters["k"]), "local_response_normalization_param_alpha": float(op.parameters["alpha"]), "local_response_normalization_param_minus_beta": float(-op.parameters["beta"]) }) name_injector = KernelNameInjector(op) source = template_same_order source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def sgemm(op: Sgemm, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: A = variables_layout[op.inputs["A"]] if op.inputs[ "A"] in variables_layout else constants_layout[op.inputs["A"]] B = variables_layout[op.inputs["B"]] if op.inputs[ "B"] in variables_layout else constants_layout[op.inputs["B"]] C = variables_layout[op.outputs["C"]] with_bias = "b" in op.inputs meta_injector = MetaInjector() meta_injector.register({ "sgemm_A_offset": A.offset, "sgemm_B_offset": B.offset, "sgemm_C_offset": C.offset, "sgemm_b_offset": constants_layout[op.inputs["b"]].offset if with_bias else 0, "sgemm_M": op.M, "sgemm_N": op.N, "sgemm_K": op.K }) inline_injector = InlineInjector(op) name_injector = KernelNameInjector(op) # transpose_X assumes fortran-order data. True means X is C-order, False means Fortran-order. # In default convolution, transpose_A == transpose_B == True. # The order of output matrix C is C-order. source = generate_template_64(op.transpose_A, op.transpose_B, op.M, op.N, op.K, inline_injector.has_inline, with_bias) source = meta_injector.inject(source) source = inline_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize((op.M + 64 - 1) // 64, (op.N + 64 - 1) // 64, 1), GPUSize(64, 1, 1), meta_injector.buffer) return [kernel]
def local_response_normalization( op: LocalResponseNormalization, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: x = variables_layout[op.inputs["x"]] y = variables_layout[op.outputs["y"]] assert x.variable.order == OrderNHWC assert y.variable.order == OrderNHWC meta_injector = MetaInjector() meta_injector.register({ "local_response_normalization_X_offset": x.offset, "local_response_normalization_Y_offset": y.offset, "local_response_normalization_N": x.variable.shape_dict[Axis.N], "local_response_normalization_H": x.variable.shape_dict[Axis.H], "local_response_normalization_W": x.variable.shape_dict[Axis.W], "local_response_normalization_C": x.variable.shape_dict[Axis.C], "local_response_normalization_param_half_n": int(op.parameters["n"] // 2), "local_response_normalization_param_k": float(op.parameters["k"]), "local_response_normalization_param_alpha": float(op.parameters["alpha"]), "local_response_normalization_param_minus_beta": float(-op.parameters["beta"]) }) name_injector = KernelNameInjector(op) source = template source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def col2im(op: Col2Im, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: col = variables_layout[op.inputs["col"]] im = variables_layout[op.outputs["im"]] assert col.variable.order == OrderNHWC assert im.variable.order == OrderNHWC meta_injector = MetaInjector() meta_injector.register({ "col2im_im_offset": im.offset, "col2im_col_offset": col.offset, "col2im_N": col.variable.shape_dict[Axis.N], "col2im_H2": col.variable.shape_dict[Axis.H], "col2im_W2": col.variable.shape_dict[Axis.W], "col2im_C1": im.variable.shape_dict[Axis.C], "col2im_H1": im.variable.shape_dict[Axis.H], "col2im_W1": im.variable.shape_dict[Axis.W], "col2im_KH": op.KH, "col2im_KW": op.KW, "col2im_SH": op.SH, "col2im_SW": op.SW, "col2im_PH": op.PH, "col2im_PW": op.PW, }) name_injector = KernelNameInjector(op) source = template source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]
def concat(op: Concat, constants_layout: MemoryLayout, variables_layout: MemoryLayout) -> List[Kernel]: xs = [ variables_layout[op.inputs[f"x{str(i)}"]] for i in range(len(op.inputs)) ] y = variables_layout[op.outputs["y"]] target_axis = op.axis x_offsets = [x.offset for x in xs] x_shapes = [x.variable.shape for x in xs] y_strides = [] stride = 1 for s in reversed(y.variable.shape): y_strides.insert(0, stride) stride *= s # x_strides[i][j] is stride size of xs[i].order.axes[j] in y x_strides_in_y = [[] for _ in xs] for x, strides in zip(xs, x_strides_in_y): for axis in x.variable.order.axes: strides.append(y_strides[y.variable.order.axes_dict[axis]]) # x_offsets[i] is memory offset of xs[i]'s data in y. y_offsets = [] target_axis_offset = 0 for x in xs: y_offsets.append(target_axis_offset * y_strides[y.variable.order.axes_dict[target_axis]]) target_axis_offset += x.variable.shape_dict[target_axis] meta_injector = MetaInjector() meta_injector.register({ "concat_y_offset": y.offset, "concat_D": len(y.variable.shape), "concat_N": len(xs), "concat_x_offsets": np.array(x_offsets, dtype=np.int32).tobytes(), "concat_x_strides_in_y": np.array(x_strides_in_y, dtype=np.int32).tobytes(), "concat_x_shapes": np.array(x_shapes, dtype=np.int32).tobytes(), "concat_y_offsets": np.array(y_offsets, dtype=np.int32).tobytes(), }) name_injector = KernelNameInjector(op) source = template source = meta_injector.inject(source) source = name_injector.inject(source) kernel = Kernel({name_injector.name: source}, name_injector.name, GPUSize(8, 1, 1), GPUSize(1024, 1, 1), meta_injector.buffer) return [kernel]