def test_upsample_multi_channel(tmp_path: Path) -> None: num_channels = 3 size = (32, 32, 10) source_data = ( 128 * np.random.randn(num_channels, size[0], size[1], size[2]) ).astype("uint8") ds = Dataset(tmp_path / "multi-channel-test", (1, 1, 1)) l = ds.add_layer( "color", COLOR_CATEGORY, dtype_per_channel="uint8", num_channels=num_channels, ) mag2 = l.add_mag("2", chunks_per_shard=32) mag2.write(source_data) assert np.any(source_data != 0) l._initialize_mag_from_other_mag("1", mag2, False) upsample_cube_job( (mag2.get_view(), l.get_mag("1").get_view(), 0), [0.5, 0.5, 0.5], BUFFER_SHAPE, ) channels = [] for channel_index in range(num_channels): channels.append(upsample_cube(source_data[channel_index], [2, 2, 2])) joined_buffer = np.stack(channels) target_buffer = l.get_mag("1").read() assert np.any(target_buffer != 0) assert np.all(target_buffer == joined_buffer)
def convert_zarr( source_zarr_path: Path, target_path: Path, layer_name: str, data_format: DataFormat, chunk_size: Vec3Int, chunks_per_shard: Vec3Int, is_segmentation_layer: bool = False, voxel_size: Optional[Tuple[float, float, float]] = (1.0, 1.0, 1.0), flip_axes: Optional[Union[int, Tuple[int, ...]]] = None, compress: bool = True, executor_args: Optional[argparse.Namespace] = None, ) -> MagView: ref_time = time.time() f = zarr.open(store=_fsstore_from_path(source_zarr_path), mode="r") input_dtype = f.dtype shape = f.shape if voxel_size is None: voxel_size = 1.0, 1.0, 1.0 wk_ds = Dataset(target_path, voxel_size=voxel_size, exist_ok=True) wk_layer = wk_ds.get_or_add_layer( layer_name, "segmentation" if is_segmentation_layer else "color", dtype_per_layer=np.dtype(input_dtype), num_channels=1, largest_segment_id=0, data_format=data_format, ) wk_layer.bounding_box = BoundingBox((0, 0, 0), shape) wk_mag = wk_layer.get_or_add_mag("1", chunk_size=chunk_size, chunks_per_shard=chunks_per_shard, compress=compress) # Parallel chunk conversion with get_executor_for_args(executor_args) as executor: largest_segment_id_per_chunk = wait_and_ensure_success( executor.map_to_futures( partial( _zarr_chunk_converter, source_zarr_path=source_zarr_path, target_mag_view=wk_mag, flip_axes=flip_axes, ), wk_layer.bounding_box.chunk(chunk_size=chunk_size * chunks_per_shard), )) if is_segmentation_layer: largest_segment_id = int(max(largest_segment_id_per_chunk)) cast(SegmentationLayer, wk_layer).largest_segment_id = largest_segment_id logger.debug("Conversion of {} took {:.8f}s".format( source_zarr_path, time.time() - ref_time)) return wk_mag
def test_default_anisotropic_voxel_size(tmp_path: Path) -> None: ds = Dataset(tmp_path / "default_anisotropic_voxel_size", voxel_size=(85, 85, 346)) layer = ds.add_layer("color", COLOR_CATEGORY) mag = layer.add_mag(1) mag.write(data=(np.random.rand(10, 20, 30) * 255).astype(np.uint8)) layer.downsample(Mag(1), None, "median", True) assert sorted(layer.mags.keys()) == [Mag("1"), Mag("2-2-1"), Mag("4-4-1")]
def convert_raw( source_raw_path: Path, target_path: Path, layer_name: str, input_dtype: str, shape: Tuple[int, int, int], data_format: DataFormat, chunk_size: Vec3Int, chunks_per_shard: Vec3Int, order: str = "F", voxel_size: Optional[Tuple[float, float, float]] = (1.0, 1.0, 1.0), flip_axes: Optional[Union[int, Tuple[int, ...]]] = None, compress: bool = True, executor_args: Optional[argparse.Namespace] = None, ) -> MagView: assert order in ("C", "F") time_start(f"Conversion of {source_raw_path}") if voxel_size is None: voxel_size = 1.0, 1.0, 1.0 wk_ds = Dataset(target_path, voxel_size=voxel_size, exist_ok=True) wk_layer = wk_ds.get_or_add_layer( layer_name, "color", dtype_per_layer=np.dtype(input_dtype), num_channels=1, data_format=data_format, ) wk_layer.bounding_box = BoundingBox((0, 0, 0), shape) wk_mag = wk_layer.get_or_add_mag("1", chunk_size=chunk_size, chunks_per_shard=chunks_per_shard, compress=compress) # Parallel chunk conversion with get_executor_for_args(executor_args) as executor: wait_and_ensure_success( executor.map_to_futures( partial( _raw_chunk_converter, source_raw_path=source_raw_path, target_mag_view=wk_mag, input_dtype=input_dtype, shape=shape, order=order, flip_axes=flip_axes, ), wk_layer.bounding_box.chunk(chunk_size=chunk_size * chunks_per_shard), )) time_stop(f"Conversion of {source_raw_path}") return wk_mag
def test_downsample_with_invalid_mag_list(tmp_path: Path) -> None: ds = Dataset(tmp_path / "downsample_mag_list", voxel_size=(1, 1, 2)) layer = ds.add_layer("color", COLOR_CATEGORY) mag = layer.add_mag(1) mag.write(data=(np.random.rand(10, 20, 30) * 255).astype(np.uint8)) with pytest.raises(AssertionError): layer.downsample_mag_list( from_mag=Mag(1), target_mags=[Mag(1), Mag([1, 1, 2]), Mag([2, 2, 1]), Mag(2)], )
def test_downsample_mag_list(tmp_path: Path) -> None: ds = Dataset(tmp_path / "downsample_mag_list", voxel_size=(1, 1, 2)) layer = ds.add_layer("color", COLOR_CATEGORY) mag = layer.add_mag(1) mag.write(data=(np.random.rand(10, 20, 30) * 255).astype(np.uint8)) target_mags = [Mag([4, 4, 8]), Mag(2), Mag([32, 32, 8]), Mag(32)] # unsorted list layer.downsample_mag_list(from_mag=Mag(1), target_mags=target_mags) for m in target_mags: assert m in layer.mags
def test_default_parameter(tmp_path: Path) -> None: target_path = tmp_path / "downsaple_default" ds = Dataset(target_path, voxel_size=(1, 1, 1)) layer = ds.add_layer("color", COLOR_CATEGORY, dtype_per_channel="uint8", num_channels=3) mag = layer.add_mag("2") mag.write(data=(np.random.rand(3, 10, 20, 30) * 255).astype(np.uint8)) layer.downsample() # The max_mag is Mag(4) in this case (see test_default_max_mag) assert sorted(layer.mags.keys()) == [Mag("2"), Mag("4")]
def test_upsampling(tmp_path: Path) -> None: ds = Dataset(tmp_path, voxel_size=(1, 1, 1)) layer = ds.add_layer("color", COLOR_CATEGORY) mag = layer.add_mag([4, 4, 2]) mag.write( absolute_offset=(10 * 4, 20 * 4, 40 * 2), data=(np.random.rand(46, 45, 27) * 255).astype(np.uint8), ) layer.upsample( from_mag=Mag([4, 4, 2]), finest_mag=Mag(1), compress=False, sampling_mode=SamplingModes.ANISOTROPIC, buffer_edge_len=64, args=None, )
def convert_knossos( source_path: Path, target_path: Path, layer_name: str, dtype: str, voxel_size: Tuple[float, float, float], data_format: DataFormat, chunk_size: Vec3Int, chunks_per_shard: Vec3Int, mag: int = 1, args: Optional[Namespace] = None, ) -> None: source_knossos_info = KnossosDatasetInfo(source_path, dtype) target_dataset = Dataset(target_path, voxel_size, exist_ok=True) target_layer = target_dataset.get_or_add_layer( layer_name, COLOR_CATEGORY, data_format=data_format, dtype_per_channel=dtype, ) with open_knossos(source_knossos_info) as source_knossos: knossos_cubes = np.array(list(source_knossos.list_cubes())) if len(knossos_cubes) == 0: logging.error( "No input KNOSSOS cubes found. Make sure to pass the path which points to a KNOSSOS magnification (e.g., testdata/knossos/color/1)." ) exit(1) min_xyz = knossos_cubes.min(axis=0) * CUBE_EDGE_LEN max_xyz = (knossos_cubes.max(axis=0) + 1) * CUBE_EDGE_LEN target_layer.bounding_box = BoundingBox( Vec3Int(min_xyz), Vec3Int(max_xyz - min_xyz) ) target_mag = target_layer.get_or_add_mag( mag, chunk_size=chunk_size, chunks_per_shard=chunks_per_shard ) with get_executor_for_args(args) as executor: target_mag.for_each_chunk( partial(convert_cube_job, source_knossos_info), chunk_size=chunk_size * chunks_per_shard, executor=executor, progress_desc=f"Converting knossos layer {layer_name}", )
def test_downsample_2d(tmp_path: Path) -> None: ds = Dataset(tmp_path / "downsample_compressed", voxel_size=(1, 1, 2)) layer = ds.add_layer("color", COLOR_CATEGORY) mag = layer.add_mag(1, chunk_size=8, chunks_per_shard=8) # write 2D data with all values set to "123" mag.write(data=(np.ones((100, 100, 1)) * 123).astype(np.uint8)) with pytest.warns(Warning): # This call produces a warning because only the mode "CONSTANT_Z" makes sense for 2D data. layer.downsample( from_mag=Mag(1), coarsest_mag=Mag(2), sampling_mode=SamplingModes. ISOTROPIC, # this mode is intentionally not "CONSTANT_Z" for this test ) assert Mag("2-2-1") in layer.mags assert np.all(layer.get_mag( Mag("2-2-1")).read() == 123) # The data is not darkened
def test_downsample_multi_channel(tmp_path: Path) -> None: num_channels = 3 size = (32, 32, 10) source_data = (128 * np.random.randn(num_channels, size[0], size[1], size[2])).astype("uint8") ds = Dataset(tmp_path / "multi-channel-test", (1, 1, 1)) l = ds.add_layer( "color", COLOR_CATEGORY, dtype_per_channel="uint8", num_channels=num_channels, ) mag1 = l.add_mag("1", chunks_per_shard=32) print("writing source_data shape", source_data.shape) mag1.write(source_data) assert np.any(source_data != 0) mag2 = l._initialize_mag_from_other_mag("2", mag1, False) downsample_cube_job( (l.get_mag("1").get_view(), l.get_mag("2").get_view(), 0), Vec3Int(2, 2, 2), InterpolationModes.MAX, BUFFER_SHAPE, ) channels = [] for channel_index in range(num_channels): channels.append( downsample_cube(source_data[channel_index], [2, 2, 2], InterpolationModes.MAX)) joined_buffer = np.stack(channels) target_buffer = mag2.read() assert np.any(target_buffer != 0) assert np.all(target_buffer == joined_buffer)
def upsample_test_helper(tmp_path: Path, use_compress: bool) -> None: ds = Dataset(tmp_path, voxel_size=(10.5, 10.5, 5)) layer = ds.add_layer("color", COLOR_CATEGORY) mag2 = layer.add_mag([2, 2, 2]) offset = Vec3Int(WKW_CUBE_SIZE, 2 * WKW_CUBE_SIZE, 0) mag2.write( absolute_offset=offset, data=(np.random.rand(*BUFFER_SHAPE) * 255).astype(np.uint8), ) mag1 = layer._initialize_mag_from_other_mag("1-1-2", mag2, use_compress) source_buffer = mag2.read( absolute_offset=offset, size=BUFFER_SHAPE, )[0] assert np.any(source_buffer != 0) upsample_cube_job( ( mag2.get_view(absolute_offset=offset, size=BUFFER_SHAPE), mag1.get_view( absolute_offset=offset, size=BUFFER_SHAPE, ), 0, ), [0.5, 0.5, 1.0], BUFFER_SHAPE, ) assert np.any(source_buffer != 0) target_buffer = mag1.read(absolute_offset=offset, size=BUFFER_SHAPE)[0] assert np.any(target_buffer != 0) assert np.all(target_buffer == upsample_cube(source_buffer, [2, 2, 1]))
def test_downsample_compressed(tmp_path: Path) -> None: ds = Dataset(tmp_path / "downsample_compressed", voxel_size=(1, 1, 2)) layer = ds.add_layer("color", COLOR_CATEGORY) mag = layer.add_mag(1, chunk_size=8, chunks_per_shard=8) mag.write(data=(np.random.rand(80, 240, 15) * 255).astype(np.uint8)) assert not mag._is_compressed() mag.compress() assert mag._is_compressed() layer.downsample( from_mag=Mag(1), coarsest_mag=Mag( 4 ), # Setting max_mag to "4" covers an edge case because the z-dimension (15) has to be rounded ) # Note: this test does not check if the data is correct. This is already covered by other test cases. assert len(layer.mags) == 3 assert Mag("1") in layer.mags.keys() assert Mag("2-2-1") in layer.mags.keys() assert Mag("4-4-2") in layer.mags.keys()
def test_downsample_mag_list_with_only_setup_mags(tmp_path: Path) -> None: ds = Dataset(tmp_path / "downsample_mag_list", voxel_size=(1, 1, 2)) layer = ds.add_layer("color", COLOR_CATEGORY) mag = layer.add_mag(1) mag.write(data=(np.random.rand(10, 20, 30) * 255).astype(np.uint8)) target_mags = [Mag([4, 4, 8]), Mag(2), Mag([32, 32, 8]), Mag(32)] # unsorted list layer.downsample_mag_list(from_mag=Mag(1), target_mags=target_mags, only_setup_mags=True) for m in target_mags: assert np.all( layer.get_mag(m).read() == 0), "The mags should be empty." layer.downsample_mag_list(from_mag=Mag(1), target_mags=target_mags, allow_overwrite=True) for m in target_mags: assert m in layer.mags
def cubing( source_path: Path, target_path: Path, layer_name: str, batch_size: Optional[int], channel_index: Optional[int], sample_index: Optional[int], dtype: Optional[str], target_mag_str: str, data_format: DataFormat, chunk_size: Vec3Int, chunks_per_shard: Vec3Int, interpolation_mode_str: str, start_z: int, skip_first_z_slices: int, pad: bool, voxel_size: Tuple[float, float, float], executor_args: Namespace, ) -> Layer: source_files = find_source_filenames(source_path) all_num_x, all_num_y = zip(*[ image_reader.read_dimensions(source_files[i]) for i in range(len(source_files)) ]) num_x = max(all_num_x) num_y = max(all_num_y) # All images are assumed to have equal channels and samples num_channels = image_reader.read_channel_count(source_files[0]) num_samples = image_reader.read_sample_count(source_files[0]) num_output_channels = num_channels * num_samples if channel_index is not None: # if there is no c axis, but someone meant to only use one channel/sample, set the sample index instead if sample_index is None and num_channels == 1 and channel_index > 0: sample_index = channel_index channel_index = 0 assert ( 0 <= channel_index < num_channels ), "Selected channel is invalid. Please check the number of channels in the source file." num_output_channels = num_samples if sample_index is not None: # if no channel axis exists, it is valid to only set the sample index. Set channel index to 0 to avoid confusion if channel_index is None and num_channels == 1: channel_index = 0 assert (channel_index is not None ), "Sample index is only valid if a channel index is also set." assert ( 0 <= sample_index < num_samples ), "Selected sample is invalid. Please check the number of samples in the source file." num_output_channels = 1 num_z_slices_per_file = image_reader.read_z_slices_per_file( source_files[0]) assert (num_z_slices_per_file == 1 or len(source_files) == 1), "Multi page TIFF support only for single files" if num_z_slices_per_file > 1: num_z = num_z_slices_per_file else: num_z = len(source_files) if dtype is None: dtype = image_reader.read_dtype(source_files[0]) if batch_size is None: batch_size = DEFAULT_CHUNK_SIZE.z target_mag = Mag(target_mag_str) target_ds = Dataset(target_path, voxel_size=voxel_size, exist_ok=True) is_segmentation_layer = layer_name == "segmentation" if is_segmentation_layer: target_layer = target_ds.get_or_add_layer( layer_name, SEGMENTATION_CATEGORY, dtype_per_channel=dtype, num_channels=num_output_channels, largest_segment_id=0, ) else: target_layer = target_ds.get_or_add_layer( layer_name, COLOR_CATEGORY, dtype_per_channel=dtype, num_channels=num_output_channels, data_format=data_format, ) target_layer.bounding_box = target_layer.bounding_box.extended_by( BoundingBox( Vec3Int(0, 0, start_z + skip_first_z_slices) * target_mag, Vec3Int(num_x, num_y, num_z - skip_first_z_slices) * target_mag, )) target_mag_view = target_layer.get_or_add_mag( target_mag, chunks_per_shard=chunks_per_shard, chunk_size=chunk_size, ) interpolation_mode = parse_interpolation_mode(interpolation_mode_str, target_layer.category) if target_mag != Mag(1): logging.info( f"Downsampling the cubed image to {target_mag} in memory with interpolation mode {interpolation_mode}." ) logging.info("Found source files: count={} size={}x{}".format( num_z, num_x, num_y)) with get_executor_for_args(executor_args) as executor: job_args = [] # We iterate over all z sections for z in range(skip_first_z_slices, num_z, DEFAULT_CHUNK_SIZE.z): # The z is used to access the source files. However, when writing the data, the `start_z` has to be considered. max_z = min(num_z, z + DEFAULT_CHUNK_SIZE.z) # Prepare source files array if len(source_files) > 1: source_files_array = source_files[z:max_z] else: source_files_array = source_files * (max_z - z) # Prepare job job_args.append(( target_mag_view.get_view( (0, 0, z + start_z), (num_x, num_y, max_z - z), ), target_mag, interpolation_mode, source_files_array, batch_size, pad, channel_index, sample_index, dtype, target_layer.num_channels, )) largest_segment_id_per_chunk = wait_and_ensure_success( executor.map_to_futures(cubing_job, job_args), progress_desc=f"Cubing from {skip_first_z_slices} to {num_z}", ) if is_segmentation_layer: largest_segment_id = max(largest_segment_id_per_chunk) cast(SegmentationLayer, target_layer).largest_segment_id = largest_segment_id # Return layer return target_layer
def tile_cubing( target_path: Path, layer_name: str, batch_size: int, input_path_pattern: str, voxel_size: Tuple[int, int, int], args: Optional[Namespace] = None, ) -> None: decimal_lengths = get_digit_counts_for_dimensions(input_path_pattern) ( min_dimensions, max_dimensions, arbitrary_file, file_count, ) = detect_interval_for_dimensions(input_path_pattern, decimal_lengths) if not arbitrary_file: logging.error( f"No source files found. Maybe the input_path_pattern was wrong. You provided: {input_path_pattern}" ) return # Determine tile size from first matching file tile_width, tile_height = image_reader.read_dimensions(arbitrary_file) num_z = max_dimensions["z"] - min_dimensions["z"] + 1 num_x = (max_dimensions["x"] - min_dimensions["x"] + 1) * tile_width num_y = (max_dimensions["y"] - min_dimensions["y"] + 1) * tile_height x_offset = min_dimensions["x"] * tile_width y_offset = min_dimensions["y"] * tile_height num_channels = image_reader.read_channel_count(arbitrary_file) logging.info("Found source files: count={} with tile_size={}x{}".format( file_count, tile_width, tile_height)) if args is None or not hasattr(args, "dtype") or args.dtype is None: dtype = image_reader.read_dtype(arbitrary_file) else: dtype = args.dtype target_ds = Dataset(target_path, voxel_size=voxel_size, exist_ok=True) is_segmentation_layer = layer_name == "segmentation" if is_segmentation_layer: target_layer = target_ds.get_or_add_layer( layer_name, SEGMENTATION_CATEGORY, dtype_per_channel=dtype, num_channels=num_channels, largest_segment_id=0, ) else: target_layer = target_ds.get_or_add_layer( layer_name, COLOR_CATEGORY, dtype_per_channel=dtype, num_channels=num_channels, ) bbox = BoundingBox( Vec3Int(x_offset, y_offset, min_dimensions["z"]), Vec3Int(num_x, num_y, num_z), ) if target_layer.bounding_box.volume() == 0: # If the layer is empty, we want to set the bbox directly because extending it # would mean that the bbox would always start at (0, 0, 0) target_layer.bounding_box = bbox else: target_layer.bounding_box = target_layer.bounding_box.extended_by(bbox) target_mag_view = target_layer.get_or_add_mag( Mag(1), block_len=DEFAULT_CHUNK_SIZE.z) with get_executor_for_args(args) as executor: job_args = [] # Iterate over all z batches for z_batch in get_regular_chunks(min_dimensions["z"], max_dimensions["z"], DEFAULT_CHUNK_SIZE.z): # The z_batch always starts and ends at a multiple of DEFAULT_CHUNK_SIZE.z. # However, we only want the part that is inside the bounding box z_batch = range( max(list(z_batch)[0], target_layer.bounding_box.topleft.z), min( list(z_batch)[-1] + 1, target_layer.bounding_box.bottomright.z), ) z_values = list(z_batch) job_args.append(( target_mag_view.get_view( (x_offset, y_offset, z_values[0]), (num_x, num_y, len(z_values)), ), z_values, input_path_pattern, batch_size, (tile_width, tile_height, num_channels), min_dimensions, max_dimensions, decimal_lengths, dtype, num_channels, )) largest_segment_id_per_chunk = wait_and_ensure_success( executor.map_to_futures(tile_cubing_job, job_args), f"Tile cubing layer {layer_name}", ) if is_segmentation_layer: largest_segment_id = max(largest_segment_id_per_chunk) cast(SegmentationLayer, target_layer).largest_segment_id = largest_segment_id
def convert_nifti( source_nifti_path: Path, target_path: Path, layer_name: str, dtype: str, voxel_size: Tuple[float, ...], data_format: DataFormat, chunk_size: Vec3Int, chunks_per_shard: Vec3Int, is_segmentation_layer: bool = False, bbox_to_enforce: Optional[BoundingBox] = None, use_orientation_header: bool = False, flip_axes: Optional[Union[int, Tuple[int, ...]]] = None, ) -> None: shard_size = chunk_size * chunks_per_shard time_start(f"Converting of {source_nifti_path}") source_nifti = nib.load(str(source_nifti_path.resolve())) if use_orientation_header: # Get canonical representation of data to incorporate # encoded transformations. Needs to be flipped later # to match the coordinate system of WKW. source_nifti = nib.funcs.as_closest_canonical(source_nifti, enforce_diag=False) cube_data = np.array(source_nifti.get_fdata()) category_type: LayerCategoryType = ("segmentation" if is_segmentation_layer else "color") logging.debug(f"Assuming {category_type} as layer type for {layer_name}") if len(source_nifti.shape) == 3: cube_data = cube_data.reshape((1, ) + source_nifti.shape) elif len(source_nifti.shape) == 4: cube_data = np.transpose(cube_data, (3, 0, 1, 2)) else: logging.warning( "Converting of {} failed! Too many or too less dimensions".format( source_nifti_path)) return if use_orientation_header: # Flip y and z to transform data into wkw's coordinate system. cube_data = np.flip(cube_data, (2, 3)) if flip_axes: cube_data = np.flip(cube_data, flip_axes) if voxel_size is None: voxel_size = tuple(map(float, source_nifti.header["pixdim"][:3])) logging.info(f"Using voxel_size: {voxel_size}") cube_data = to_target_datatype(cube_data, dtype, is_segmentation_layer) # everything needs to be padded to if bbox_to_enforce is not None: target_topleft = np.array((0, ) + tuple(bbox_to_enforce.topleft)) target_size = np.array((1, ) + tuple(bbox_to_enforce.size)) cube_data = pad_or_crop_to_size_and_topleft(cube_data, target_size, target_topleft) # Writing wkw compressed requires files of shape (shard_size, shard_size, shard_size) # Pad data accordingly padding_offset = shard_size - np.array(cube_data.shape[1:4]) % shard_size cube_data = np.pad( cube_data, ( (0, 0), (0, int(padding_offset[0])), (0, int(padding_offset[1])), (0, int(padding_offset[2])), ), ) wk_ds = Dataset( target_path, voxel_size=cast(Tuple[float, float, float], voxel_size or (1, 1, 1)), exist_ok=True, ) wk_layer = (wk_ds.get_or_add_layer( layer_name, category_type, dtype_per_layer=np.dtype(dtype), data_format=data_format, largest_segment_id=int(np.max(cube_data) + 1), ) if is_segmentation_layer else wk_ds.get_or_add_layer( layer_name, category_type, data_format=data_format, dtype_per_layer=np.dtype(dtype), )) wk_mag = wk_layer.get_or_add_mag("1", chunk_size=chunk_size, chunks_per_shard=chunks_per_shard) wk_mag.write(cube_data) time_stop(f"Converting of {source_nifti_path}")