コード例 #1
0
def batch_extract_content(websiteElementsPath, urlData):
    ## 1) Extract webpage data
    print "[INFO] ==== Extracting webpage data ===="
    data_extractor = WebsiteDataExtractor(websiteElementsPath)

    out = pd.DataFrame(urlData["URL"])

    keyterms = []
    for url in urlData["URL"]:
        print url

        data_dict = data_extractor.crawlPage(url)

        ## 2) Extract candidate keyterms
        print "[INFO] ==== Extracting candidate keyterms ===="
        keyterm_extractor = KeyTermExtractor(data_dict)
        keyterm_extractor.execute()

        #print keyterm_extractor.result_dict
        ## 3) Compute candidate keyterm features
        print "[INFO] ==== Computing candidate keyterm features ===="
        keyterm_feat = KeyTermFeatures(url, data_dict, keyterm_extractor.result_dict, lang=utils.LANG_FR)
        candidate_keyterm_df = keyterm_feat.compute_features()

        selected_keyterms = []
        if not candidate_keyterm_df.empty:
        ## 4) Filter for relevancy and output top 10 keyterms
            print "[INFO] ==== Selecting relevant keyterms ===="
            relevance_filter = RelevanceFilter(candidate_keyterm_df, "dataset/keyterm-classifier-model-v2.pickle", topk=10)
            selected_keyterms = relevance_filter.select_relevant()

        keyterms.append(",".join(selected_keyterms))

    out["keyterms"] = keyterms
    return out
コード例 #2
0
def create_raw_dataset(output_filename):
    df_raw = read_raw_data("dataset/preProc2_lower.json")
    page_scraper = WebsiteDataExtractor("dataset/WebsiteElementsPathDef.xml")

    # training dataset is made up only of pages published in 2015
    df_dataset = df_raw.loc[df_raw['dateTime'].map(lambda x: x.year >= 2015)]

    # get all URLs
    all_urls = [x[1] for x in df_dataset['link'].iteritems()]

    # get urls common with grapeshot - these will be our test set
    test_urls = None
    with open("dataset/extracted_terms_grapeshot_common_v3.json") as fp:
        d = json.load(fp, encoding="utf-8")
        test_urls = d.keys()


    train_urls = [x for x in all_urls if x not in test_urls]
    train_urls = random.sample(train_urls, 4 * len(test_urls))

    # dataset urls are test + train
    dataset_urls = test_urls + train_urls


    dataset_dict = {}
    idx = 1
    for url in dataset_urls:
        print "[INFO] " + str(idx) + " :: Parsing URL: " + url
        page_data = page_scraper.crawlPage(url)
        dataset_dict[url] = page_data

        idx += 1

    with open(output_filename, mode="w") as fp:
        json.dump(dataset_dict, fp, encoding="utf-8")

    with open("dataset/test_url_list.json", mode="w") as fp:
        json.dump(test_urls, fp, encoding="utf-8")

    with open("dataset/train_url_list.json", mode="w") as fp:
        json.dump(train_urls, fp, encoding="utf-8")

    print "[INFO] Page scraping dataset created."
コード例 #3
0
def get_candidate_keyterms_dataset(output_file, url_list):
    from website_data_extractor import WebsiteDataExtractor
    from keyterm_extractor import KeyTermExtractor2

    data_scraper = WebsiteDataExtractor("dataset/WebsiteElementsPathDef.xml")
    candidate_extractor = KeyTermExtractor2(tagger, lang="french")
    candidate_extractor.initialize()

    dataset_dict = {}

    for link in url_list:
        print "Processing URL: " + link
        data_dict = data_scraper.crawlPage(link)
        candidate_extractor.execute(data_dict)

        dataset_dict[link] = candidate_extractor.candidates
        candidate_extractor.cleanup()

    with open(output_file, "w") as fp:
        json.dump(dataset_dict, fp)
コード例 #4
0
    def _initialize(self):
        self.tagger = ttw.TreeTagger(TAGLANG=self.lang_abrev, TAGDIR=KeyTermExtractor2.TREETAGGER_DIR)

        self.data_scraper = WebsiteDataExtractor("dataset/WebsiteElementsPathDef.xml")
        self.candidate_extractor = KeyTermExtractor2(self.tagger, lang = self.lang)
        self.candidate_extractor.initialize()

        self.feature_extractor = KeyTermFeatures2(self.tagger, lang = self.lang)
        #self.relevance_filter = RelevanceFilter("dataset/keyterm-classifier-model-v3.pickle", topk = self.topk)
        #self.relevance_filter = RelevanceFilter("dataset/keyterm-classifier-model-updated.pickle", topk = self.topk)
        self.relevance_filter = RelevanceFilter("dataset/keyterm-classifier-model-general.pickle", topk = self.topk)
        self.keytermClassifier = KeytermClassification(
            classesFile="dataset/top10-keywords-ecommerce-filtered.txt",
            classesClusterPath="dataset/keyterm_clustering/top_adv_keyterm_clusters.dump")
コード例 #5
0
__author__ = "alex"

import pprint
import utils.functions as utils
from website_data_extractor import WebsiteDataExtractor
from keyterm_extractor import KeyTermExtractor, KeyTermExtractor2
from keyterm_features import KeyTermFeatures
from keyterm_classifier import RelevanceFilter


if __name__ == "__main__":
    url = 'http://www.generation-nt.com/blackview-a8-smartphone-petit-budget-pas-cher-mwc-2016-actualite-1925283.html'

    ## 1) Extract webpage data
    print "[INFO] ==== Extracting webpage data ===="
    data_extractor = WebsiteDataExtractor("dataset/WebsiteElementsPathDef.xml")
    data_dict = data_extractor.crawlPage(url)

    ## 2) Extract candidate keyterms
    print "[INFO] ==== Extracting candidate keyterms ===="
    keyterm_extractor = KeyTermExtractor(data_dict)
    keyterm_extractor.execute()

    keyterm_extractor2 = KeyTermExtractor2(data_dict, lang="french")
    keyterm_extractor2.execute()

    print "======== Results from Extractor 1 ========"
    pprint.pprint(keyterm_extractor.result_dict)
    # print "Nr t1grams: " + str(len(keyterm_extractor.result_dict['t1gram']['term']))
    # print "Nr t2grams: " + str(len(keyterm_extractor.result_dict['t2gram']['term']))
    # print "Nr t3grams: " + str(len(keyterm_extractor.result_dict['t3gram']['term']))
コード例 #6
0
class KeytermServerExtractor(object):
    def __init__(self, port = 8080, lang = utils.LANG_FR, topk = 10):
        print "Initializing Term Extractor Server"

        ## setup server port
        self.port = port
        self.topk = topk

        ## setup keyterm service extraction language
        self.lang = lang
        self.lang_abrev = utils.LANG_ABREV[lang]

        ## setup http request handling classes
        self.server_class = HTTPServer
        self.handler_class = makeServerHandlerClass(self)

        ## setup logging
        ## setup logging
        root_log = logging.getLogger()
        root_log.setLevel(logging.ERROR)

        stdout_log = logging.StreamHandler(sys.stdout)
        stdout_log.setLevel(logging.ERROR)
        formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
        stdout_log.setFormatter(formatter)
        root_log.addHandler(stdout_log)

        ## initialize keyterm extraction service modules
        self._initialize()

    def _initialize(self):
        self.tagger = ttw.TreeTagger(TAGLANG=self.lang_abrev, TAGDIR=KeyTermExtractor2.TREETAGGER_DIR)

        self.data_scraper = WebsiteDataExtractor("dataset/WebsiteElementsPathDef.xml")
        self.candidate_extractor = KeyTermExtractor2(self.tagger, lang = self.lang)
        self.candidate_extractor.initialize()

        self.feature_extractor = KeyTermFeatures2(self.tagger, lang = self.lang)
        #self.relevance_filter = RelevanceFilter("dataset/keyterm-classifier-model-v3.pickle", topk = self.topk)
        #self.relevance_filter = RelevanceFilter("dataset/keyterm-classifier-model-updated.pickle", topk = self.topk)
        self.relevance_filter = RelevanceFilter("dataset/keyterm-classifier-model-general.pickle", topk = self.topk)
        self.keytermClassifier = KeytermClassification(
            classesFile="dataset/top10-keywords-ecommerce-filtered.txt",
            classesClusterPath="dataset/keyterm_clustering/top_adv_keyterm_clusters.dump")

    def _cleanup(self):
        self.tagger = None
        self.data_scraper.cleanup()
        self.candidate_extractor.cleanup()
        self.feature_extractor.cleanup()
        self.relevance_filter.cleanup()


    def runServer(self):
        server_address = ('', self.port)
        httpd = self.server_class(server_address, self.handler_class)

        print 'Starting httpd...'
        try:
            httpd.serve_forever()
        except KeyboardInterrupt:
            self._cleanup()
            sys.exit(0)
        except Exception as ex:
            logging.getLogger().exception("Error in keyterm extraction!")
            sys.exit(0)


    def extracTermsFromLink(self, link):
        default_return = {
            "available_domains": ["http://www.generation-nt.com/", "http://www.maison.com/",
                                  "http://www.journaldugeek.com/", "http://www.journaldugamer.com/",
                                  "http://www.jdubuzz.com/", "http://news.pixelistes.com/",
                                  "http://www.societe.com/", "http://www.pausecafein.fr/",
                                  "http://worldofwarcraft.judgehype.com/news/",
                                  "http://hearthstone.judgehype.com/news/", "http://diablo3.judgehype.com/news/",
                                  "http://www.judgehype.com/news/",
                                  "http://www.jeuxonline.info", "http://heroes.judgehype.com/news/",
                                  "http://overwatch.judgehype.com/news/",
                                  "http://film-warcraft.judgehype.com/news/", "http://judgehype.com/",
                                  "http://portail.free.fr/", "http://www.planet.fr/",
                                  "http://aliceadsl.closermag.fr/", "http://aliceadsl.lemonde.fr/",
                                  "http://aliceadsl.gqmagazine.fr/"],
            "defaultPath": False, "dataIntegrity":False, "keyTerms":[]}

        try:
            ## 1) Extract webpage data
            print "[INFO] ==== Extracting webpage data ===="
            data_dict = self.data_scraper.crawlPage(link)

            default_return["defaultPath"] = data_dict["defaultPath"]
            default_return["dataIntegrity"] = data_dict["dataIntegrity"]

            if data_dict["defaultPath"] or not data_dict["dataIntegrity"]:
                return default_return

            #pprint.pprint(data_dict)
            ## 2) Extract candidate keyterms
            print "[INFO] ==== Extracting candidate keyterms ===="
            self.candidate_extractor.execute(data_dict)

            # print keyterm_extractor.result_dict
            ## 3) Compute candidate keyterm features
            print "[INFO] ==== Computing candidate keyterm features ===="
            candidate_keyterm_df = self.feature_extractor.compute_features(link, data_dict, self.candidate_extractor.candidates)


            ## 4) Filter for relevancy and output top 10 keyterms
            print "[INFO] ==== Selecting relevant keyterms ===="
            selected_keyterms = self.relevance_filter.select_relevant(candidate_keyterm_df, self.candidate_extractor.candidates)

            # print "[INFO] ==== FINAL SELECTION ====="
            default_return["keyTerms"] = selected_keyterms
            return default_return

        except:
            return default_return



    def extractTermsFromText(self, text):
        default_return = {
            "available_domains": ["http://www.generation-nt.com/", "http://www.maison.com/",
                                  "http://www.journaldugeek.com/", "http://www.journaldugamer.com/",
                                  "http://www.jdubuzz.com/", "http://news.pixelistes.com/",
                                  "http://www.societe.com/", "http://www.pausecafein.fr/",
                                  "http://worldofwarcraft.judgehype.com/news/",
                                  "http://hearthstone.judgehype.com/news/", "http://diablo3.judgehype.com/news/",
                                  "http://www.judgehype.com/news/",
                                  "http://www.jeuxonline.info", "http://heroes.judgehype.com/news/",
                                  "http://overwatch.judgehype.com/news/",
                                  "http://film-warcraft.judgehype.com/news/", "http://judgehype.com/",
                                  "http://portail.free.fr/", "http://www.planet.fr/",
                                  "http://aliceadsl.closermag.fr/", "http://aliceadsl.lemonde.fr/",
                                  "http://aliceadsl.gqmagazine.fr/"],
            "defaultPath": False, "dataIntegrity": False, "keyTerms": []}

        try:
            candidate_keyterms = self.candidate_extractor.execute_with_snippet(text)
            keyterms = self.filter_candidates_from_snippet(candidate_keyterms)

            default_return["keyTerms"] = keyterms

            return default_return

        except:
            return default_return

    def recommendKeytermsForBase(self, link):
        default_return = {
            "type": "Recommendations based on clustering.",
            "text_used_from_link": ["title", "description", "keywords", "urlTokens"],
            "keyTerms_recommandations": []}

        try:
            ## 1) Extract webpage data
            print "[INFO] ==== Extracting webpage data USING Specific PathDef===="

            data_dict = self.data_scraper.crawlPage(link, elementsPathDef="baseCluster")
            #Check integrity of list
            if len(data_dict) <= 0:
                return default_return

            # #TEST
            # default_return["crawled_data"] = data_dict

            #Simple extraction of possible terms (not using trained model)
            #Concatanate into text all components with sentence separation
            text_for_analysis = u''
            for key, value in data_dict.iteritems():
                if isinstance(value, basestring):
                    text_for_analysis = text_for_analysis + ". " + value + ". "
                elif isinstance(value, list):
                    text_for_analysis = text_for_analysis + ". ".join(value)

            # #TEST
            # default_return["text_for_analysis"] = text_for_analysis

            #pprint.pprint(data_dict)
            ## 2) Extract candidate keyterms
            print "[INFO] ==== Extracting candidate keyterms ===="
            candidates = self.candidate_extractor.execute_with_snippet(text_for_analysis)

            #SHOW CANDIDATES
            # default_return["keyTerms_candidates"] = candidates

            ## 3) Compute keyterm recommendations comparing cluster centroids
            print "[INFO] ==== Computing keyterm recommendations ===="
            orig_list, keyterm_recommendations = self.keytermClassifier.match_adv_keyterm_clusters_base(candidates,
                                                                                     min_similarity_threshold=0.5)

            # print "[INFO] ==== FINAL SELECTION ====="
            default_return["keyTerms_recommandations"] =  keyterm_recommendations
            return default_return

        except:
            return default_return

    def recommendKeytermsSimple(self, link):
        default_return = {
            "type": "Simple recommendation based only on individual extracted keyterms.",
            "defaultPath": False, "dataIntegrity": False,
            "keyTerms_recommandations": []}

        try:
            ## 1) Extract webpage data
            print "[INFO] ==== Extracting Terms From Link ===="

            keyterms = self.extracTermsFromLink(link)["keyTerms"]

            if len(keyterms) <= 0:
                return default_return

            ##2) Compute keyterm recommendations comparing cluster centroids
            print "[INFO] ==== Computing keyterm recommendations ===="
            orig_list, keyterm_recommendations = self.keytermClassifier.match_adv_keyterm_website(keyterms,
                                                       min_similarity_threshold=0.5, min_diff_distance=0.90, top=5)

            print "[INFO] ==== FINAL SELECTION ====="
            default_return["keyTerms_recommandations"] =  list(keyterm_recommendations)
            return default_return

        except:
            return default_return


    def filter_candidates_from_snippet(self, candidate_keyterms):
        from functools import cmp_to_key

        ordered_keyterms = sorted(candidate_keyterms.itervalues(), key = lambda item: item['cvalue'], reverse = True)
        selected_keyterms = [item for item in ordered_keyterms if item['cvalue'] > 0]

        def pos_cmp(keyterm1, keyterm2):
            if not "NAM" in keyterm1['pos'] and "NAM" in keyterm2['pos']:
                return -1
            elif "NAM" in keyterm1['pos'] and "NAM" not in keyterm2['pos']:
                return 1
            else:
                return 0

        filtered_keyterms = sorted(selected_keyterms, key=cmp_to_key(pos_cmp), reverse=True)

        keyterms = [{'term' : " ".join(t['words']), 'cvalue': t['cvalue'], 'lemma': t['lemma_string'], 'pos_tag': t['pos']} for t in filtered_keyterms]
        return keyterms