コード例 #1
0
ファイル: process_vtk.py プロジェクト: siboles/bioMultiScale
 def generateBoxPlot(self, setnames=None, variable=None, filename='output'):
     if setnames is None:
         print("Warning: no setnames provided. Assuming all elements and nodes in model.")
     elif not isinstance(setnames, list):
         setnames = [setnames]
     if variable is None or not isinstance(variable, str):
         raise TypeError(variable)
     for s in setnames:
         fig = plt.Figure()
         ax = fig.add_subplot(111)
         quartiles = []
         medians = []
         df1 = pd.DataFrame()
         for k, v in self.element_sets[s].items():
             weights = numpy_support.vtk_to_numpy(v.GetCellData().GetArray('Reference Volume'))
             data = numpy_support.vtk_to_numpy(v.GetCellData().GetArray(variable))
             # idx = np.argwhere(data > 0.1).ravel()
             # weights = weights[idx]
             weights /= np.max(weights)
             # data = data[idx]
             medians.append(quantile(data, weights, 0.5))
             quartiles.append([quantile(data, weights, x) for x in [0.0, 0.25, 0.75, 1.0]])
             df2 = pd.DataFrame({k: np.array(data, dtype="object")})
             df1 = pd.concat([df1, df2], axis=1)
         df1.boxplot(ax=ax, vert=False, grid=False)
         ax.xaxis.tick_top()
         ax.xaxis.set_label_position('top')
         fig.savefig('{}.svg'.format(filename))
コード例 #2
0
ファイル: read_data.py プロジェクト: aaorsi/trans_eq
def open_filters(fdir, usecols=[0, 1]):
    ff = RootDir + fdir + '/'
    fil_ext = 'fil' if fdir == 'CFHTLS' else 'dat'
    flist = glob.glob(ff + '*.' + fil_ext)
    nfilters = len(flist)

    print '%ld filters found for %s' % (nfilters, fdir)
    if nfilters == 0:
        raise ValueError('no filters found!')

    filters = {}  #'flist':flist}
    filters_sorted = {}  #'flist':flist}
    fname = []
    meanw = []
    for i in range(nfilters):
        fdata = np.loadtxt(flist[i], usecols=usecols)
        filtername = string.rsplit(flist[i], '/', 1)[1].rsplit('.', 1)[0]
        fname.append(filtername)
        meanw.append(wp.quantile(fdata[:, 0], fdata[:, 1], 0.5))
        filters.update({filtername: fdata})
    filters.update({'filters': fname})
    filters.update({'MeanWavelength': meanw})

    wsort = np.argsort(filters['MeanWavelength'])
    fnamelist = np.asarray(filters['filters'])[wsort]

    filters_sorted.update({'filters': fnamelist})
    for i in range(nfilters):
        f_i = fnamelist[i]
        filters_sorted.update({f_i: filters[f_i]})

    filters_sorted.update(
        {'MeanWavelength': np.asarray(filters['MeanWavelength'])[wsort]})

    return filters_sorted
コード例 #3
0
ファイル: test_weighted.py プロジェクト: aadu/wquantiles
 def test_weighted_median_3D(self):
     arr1 = quantile(self.a3D, self.aw, 0.5)
     arr2 = np.array([[ 43.66666667, 91., 35., 50., 23.],[30.66666667, 89., 75.66666667, 6., 48.33333333],
             [49., 54.66666667, 16.33333333, 89.33333333, 26.33333333],
             [63., 34., 37.33333333, 57.66666667, 82.], [34., 32., 29., 37., 51.33333333]])
     #print(arr1, arr2)
     nptest.assert_array_almost_equal(arr1, arr2)
コード例 #4
0
 def test_weighted_median_3D(self):
     arr1 = quantile(self.a3D, self.aw, 0.5)
     arr2 = np.array(
         [[43.66666667, 91., 35., 50., 23.],
          [30.66666667, 89., 75.66666667, 6., 48.33333333],
          [49., 54.66666667, 16.33333333, 89.33333333, 26.33333333],
          [63., 34., 37.33333333, 57.66666667, 82.],
          [34., 32., 29., 37., 51.33333333]])
     #print(arr1, arr2)
     nptest.assert_array_almost_equal(arr1, arr2)
コード例 #5
0
def calc_fit_power_law(delta_f_snr_bins=snr_stats_total):
    snr_bins = delta_f_snr_bins_helper.get_log_snr_axis()
    y_quantile = np.zeros_like(snr_bins)
    y1 = delta_f_snr_bins_helper.get_delta_f_axis()
    for i in range(50):
        y_quantile[i] = weighted.quantile(y1, delta_f_snr_bins[i], .9)
    mask = [np.logical_and(-0 < snr_bins, snr_bins < 3)]
    masked_snr_bins = snr_bins[mask]
    # print("x2:", masked_snr_bins)
    fit_params = lmfit.Parameters()
    fit_params.add('a', -2., min=-5, max=-1)
    fit_params.add('b', 1., min=0.1, max=20.)
    fit_params.add('c', 0.08, min=0, max=0.2)
    fit_params.add('d', 3, min=-5, max=5)
    fit_result = lmfit.minimize(fit_function, fit_params, kws={'data': y_quantile[mask], 'x': masked_snr_bins})
    return fit_result, snr_bins, masked_snr_bins, y_quantile
コード例 #6
0
def reduce_and_save(output_file, global_histogram, histogram,
                    group_parameters):
    comm.Reduce([histogram, MPI.DOUBLE], [global_histogram, MPI.DOUBLE],
                op=MPI.SUM,
                root=0)
    if comm.rank == 0:
        # compute the median and add it to the npz file
        ism_spec = np.zeros(shape=global_histogram.shape[1], dtype=np.double)
        for i in range(ism_spec.size):
            ism_spec[i] = weighted.quantile(
                np.arange(global_histogram.shape[0]), global_histogram[:, i],
                0.5)
        ism_spec *= float(flux_range) / num_bins
        ism_spec += flux_min

        np.savez_compressed(output_file,
                            histogram=global_histogram,
                            ar_wavelength=ar_wavelength,
                            flux_range=[flux_min, flux_max],
                            ism_spec=ism_spec,
                            group_parameters=group_parameters)
コード例 #7
0
def calc_fit_power_law(delta_f_snr_bins=snr_stats_total):
    snr_bins = delta_f_snr_bins_helper.get_log_snr_axis()
    y_quantile = np.zeros_like(snr_bins)
    y1 = delta_f_snr_bins_helper.get_delta_f_axis()
    for i in range(50):
        y_quantile[i] = weighted.quantile(y1, delta_f_snr_bins[i], .9)
    mask = [np.logical_and(-0 < snr_bins, snr_bins < 3)]
    masked_snr_bins = snr_bins[mask]
    # print("x2:", masked_snr_bins)
    fit_params = lmfit.Parameters()
    fit_params.add('a', -2., min=-5, max=-1)
    fit_params.add('b', 1., min=0.1, max=20.)
    fit_params.add('c', 0.08, min=0, max=0.2)
    # make sure the exponent base is non-negative
    fit_params.add('d', 3, min=-masked_snr_bins.min(), max=5)
    fit_result = lmfit.minimize(fit_function,
                                fit_params,
                                kws={
                                    'data': y_quantile[mask],
                                    'x': masked_snr_bins
                                })
    return fit_result, snr_bins, masked_snr_bins, y_quantile
def getQuantileIncome(quantile, state, race, sex, agegroup):
    # NOTE: please see
    # http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMSDataDict14.pdf
    # for column identifiers

    # select all records matching the valid criteria
    query = """
        SELECT
            PERNP, PWGTP
        FROM
            PUMS_2014_Persons
    """
    query += getWhereClause(state, race, sex, agegroup)
    cursor.execute(query)

    # fetch all results and compute the quantile value
    results = cursor.fetchall()
    r = numpy.asarray(results, dtype=float)
    if len(r) > 0:
        pernp = r[:, 0]
        pwgtp = r[:, 1]
        return int(round(weighted.quantile(pernp, pwgtp, quantile),-2))
    else:
        return 0
コード例 #9
0
def getQuantileIncome(quantile, state, race, sex, agegroup):
    # NOTE: please see
    # http://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMSDataDict14.pdf
    # for column identifiers

    # select all records matching the valid criteria
    query = """
        SELECT
            PERNP, PWGTP
        FROM
            PUMS_2014_Persons
    """
    query += getWhereClause(state, race, sex, agegroup)
    cursor.execute(query)

    # fetch all results and compute the quantile value
    results = cursor.fetchall()
    r = numpy.asarray(results, dtype=float)
    if len(r) > 0:
        pernp = r[:, 0]
        pwgtp = r[:, 1]
        return int(round(weighted.quantile(pernp, pwgtp, quantile), -2))
    else:
        return 0
コード例 #10
0
ファイル: get_oii.py プロジェクト: aaorsi/jpas_mock
# simple attenuation to match observed data.

#pdb.set_trace()

att 	= [0.1,1.0]
zratt = [0.2,1.8]
att_gal = np.interp(GalArr['redshift'],zratt,att)
loii = loii[0] + np.log10(att_gal)

nFil = len(FiltArr['w'])
CentralW = np.zeros(nFil)
int_ab = np.zeros(nFil)
p10p90W = np.zeros([nFil,2])

for i in range(nFil):
	CentralW[i] = wp.quantile(FiltArr['w'][i],FiltArr['t'][i],0.5)
	nz = np.where(FiltArr['w'][i] != 0)
	int_ab[i] = (integral.simps(FiltArr['t'][i][nz]/FiltArr['w'][i][nz],FiltArr['w'][i][nz]))
	p10p90W[i,0] = wp.quantile(FiltArr['w'][i][nz],FiltArr['t'][i][nz],0.1)
	p10p90W[i,1] = wp.quantile(FiltArr['w'][i][nz],FiltArr['t'][i][nz],0.9)
	print 'int_ab[i]',int_ab[i]

mpc2cm_24 = 3.0856778 # mpc-to-cm /1e24
distance = np.sqrt(GalArr['pos'][:,0]**2 + GalArr['pos'][:,1]**2+GalArr['pos'][:,2]**2)

log_dist = np.log10(distance) + np.log10(mpc2cm_24)+24.0 + np.log10(1+GalArr['redshift'])

log_Fline = loii + 40.0 - (np.log10(4*np.pi)+2*(log_dist))
FLine = 10**log_Fline
wgal = L_line*(1 + GalArr['redshift'])
コード例 #11
0
# ax2.set_xlabel(r"${\rm SNR (red)}$", fontsize=14)
# ax2.set_ylabel(r"${\rm \left|\delta F\right|}$", fontsize=14)
# plt.set_cmap('gray')
# plt.plot(x, y)
result, snr_bins, masked_snr_bins, y_quantile = calc_fit_power_law()

print(power_law_to_string(result))

ax1.plot(snr_bins, y_quantile, linewidth=1.)

fit = fit_function(params=result.params, data=0, x=masked_snr_bins)
fit = np.clip(fit, 0, 1)
ax1.plot(masked_snr_bins, fit, color='deepskyblue',
         linewidth=4.)  # , linestyle=(0., (8., 8.)))
plt.xticks(np.arange(min(snr_bins), max(masked_snr_bins) + 1, 1.0))
fig.tight_layout()

print(
    "test fit",
    fit_function(params=result.params, data=0, x=[-1.5, -1., 0., 1., 2., 10.]))

plt.figure()
plt.plot(snr_bins, snr_stats_total.sum(axis=1))
total_snr_quantile_1 = weighted.quantile(snr_bins, snr_stats_total.sum(axis=1),
                                         0.10)
total_snr_quantile_9 = weighted.quantile(snr_bins, snr_stats_total.sum(axis=1),
                                         0.90)
print("SNR: 0.1 limit:", total_snr_quantile_1, "0.9 limit:",
      total_snr_quantile_9)
plt.show()
コード例 #12
0
ファイル: get_all_lines.py プロジェクト: aaorsi/jpas_mock
def main(nproc, outfile):
    """
  Creates files containing all emission line luminosities and
  magnitudes for lightcone galaxies.
  Calculation is split in a given number of processes, where
  each computes the emission lines of a chunk of data independently
  and outputs the results to a file.

  Arguments:

  nproc = number of processes
  outfile = Output file name. (final name will be followed by a number)

  """
    # nproc = argv[0]
    # outfile = argv[1]

    # if (len(argv) < 2):
    #   print 'you need to provide 2 arguments: nproc outfile.'
    #   print 'Exiting..'
    #   return 0

    nproc = int(nproc)

    IncludeMags = True

    print 'nproc:', nproc, ' outfile:', outfile
    sys.stdout.flush()
    #L_line  = 1215.67  # Angstroms
    L_line = 3727.0  # Angstroms
    #Lyaz,izr,GalArr,Vol = get_lya(zrange)

    FiltArr, wrange = rf.read_filters()
    jpaslims = jp.get_jpaslims()

    app_type = 1  # 0 means per 3 arcsec diameter, 1 means per square arcsec
    cosmo = FlatLambdaCDM(H0=73, Om0=0.25)
    zrArr = comparat_zranges()

    zminlist = map(float, zrArr['zmin'])
    zmaxlist = map(float, zrArr['zmax'])
    minz = np.min(zminlist)
    maxz = np.max(zmaxlist)
    #maxz = np.max(zrArr['zmax'])

    print minz, maxz
    minsfr = 0.1

    nFil = len(FiltArr['w'])
    CentralW = np.zeros(nFil)
    int_ab = np.zeros(nFil)
    p10p90W = np.zeros([nFil, 2])

    for i in range(nFil):
        CentralW[i] = wp.quantile(FiltArr['w'][i], FiltArr['t'][i], 0.5)
        nz = np.where(FiltArr['w'][i] != 0)
        int_ab[i] = (integral.simps(FiltArr['t'][i][nz] / FiltArr['w'][i][nz],
                                    FiltArr['w'][i][nz]))
        p10p90W[i, 0] = wp.quantile(FiltArr['w'][i][nz], FiltArr['t'][i][nz],
                                    0.1)
        p10p90W[i, 1] = wp.quantile(FiltArr['w'][i][nz], FiltArr['t'][i][nz],
                                    0.9)
        print 'int_ab[i]', int_ab[i]

    print 'loading lightcone data'
    props = ['redshift', 'pos', 'Mz', 'Mcold', 'sfr', 'vel', 'stellarmass']
    print 'now loading photo-ionisation grid'
    lineinfo, linesarr = read_photoion()
    nline = lineinfo['nlines']
    usezspace = 1

    # magtype stores both the value of the magnitude (float) and the
    # filter id (int) where that magnitude was computed.

    magtype = np.dtype('f4, i4')

    def read_lightcone_chunk(ip, nproc):
        GalArr, lLyc, ngg, DistNz, zdist = readmock_chunk(ip,
                                                          nproc,
                                                          props_array=props,
                                                          zspace=usezspace,
                                                          sfrmin=500)

        zcold = GalArr['Mcold'] / GalArr['Mz']
        qpar = qZrelation(zcold)  # assuming default pars.

        # This stores all line luminosities for all galaxies
        # LinesLumArr[i,j] = Luminosity of line j for galaxy i.
        LinesLumArr = np.zeros((ngg, nline))
        redshiftArr = np.zeros(ngg)
        SfrArr = np.zeros(ngg)
        MStellarArr = np.zeros(ngg)
        ZArr = np.zeros(ngg)
        print 'ip ' + str(
            ip) + ', computing lines for  ngals=', ngg, ' galaxies...'
        sys.stdout.flush()
        for ig in range(ngg):
            LinesLumArr[ig, :] = integ_line(lineinfo,
                                            linesarr,
                                            qpar[ig],
                                            zcold[ig],
                                            lLyc[ig],
                                            all_lines=True)
            redshiftArr[ig] = GalArr['redshift'][ig]
            SfrArr[ig] = GalArr['sfr'][ig]
            MStellarArr[ig] = GalArr['stellarmass'][ig]
            ZArr[ig] = zcold[ig]


#     LinesLumArr[ig,il] = iline

        print 'redshiftArr', redshiftArr[0:10]
        print 'Lines[0,:]', LinesLumArr[0, :]
        print 'Lines[10,:]', LinesLumArr[10, :]
        print 'Lines[100,:]', LinesLumArr[100, :]
        print 'zarr[100,:]', ZArr[0:100]
        print 'Proc ip:' + str(ip) + ' done with that.'

        # This stores the AB observed-frame apparent magnitude for all luminosities of all galaxies, indicating also to which filter
        # the stored magnitudes corresponds to.
        # MagsLumArr[i,j] = (AB magnitude, filter id) of line j of galaxy i.

        MagsLumArr = np.zeros((ngg, nline), dtype=magtype)
        realdist = np.sqrt(GalArr['pos'][:, 0]**2 + GalArr['pos'][:, 1]**2 +
                           GalArr['pos'][:, 2]**2)
        log_dist = np.log10(realdist) + np.log10(mpc2cm_24) + 24.0 + np.log10(
            1 + GalArr['redshift'])

        if IncludeMags is True:
            for il in range(nline):
                L_line = lineinfo['lambda0'][il]
                wgal = L_line * (1 + GalArr['redshift'])
                log_Fline = LinesLumArr[:, il] - (np.log10(4 * np.pi) + 2 *
                                                  (log_dist))
                FLine = 10**log_Fline

                for i in range(ngg):
                    idFilter, Val = find_nearest_vector(CentralW, wgal[i])

                    if idFilter == 0:
                        if wgal[i] < p10p90W[0, 0]:
                            MagsLumArr[i, il] = (-99, -99)
                            continue
                    elif idFilter == nFil - 1:
                        if wgal[i] > p10p90W[nFil - 1, 1]:
                            MagsLumArr[i, il] = (99, 99)
                            continue
                    else:
                        nz = np.where(FiltArr['w'][idFilter] != 0)
                        lamb = FiltArr['w'][idFilter][nz]
                        tlamb = FiltArr['t'][idFilter][nz]
                        tlam0 = np.interp(wgal[i], lamb, tlamb)
                        # mag_app[i] = -2.5*(log_Fline[i]+ np.log10((wgal[i]*tlam0)/int_ab[idFilter]) - 18-np.log10(3.0)) - 48.60
                        mag_app = -2.5 * (log_Fline[i] + np.log10(
                            (wgal[i] * tlam0) / int_ab[idFilter]) - 18 -
                                          np.log10(3.0)) - 48.60

                        MagsLumArr[i, il] = (mag_app, idFilter)

        filename = outfile + '.' + str(ip)
        nf = open(filename, "wb")
        print 'writing file ' + filename
        nf.write(struct.pack('l', ngg))
        nf.write(struct.pack('i', nline))
        LinesLumArr.tofile(nf)
        if IncludeMags is True:
            MagsLumArr.tofile(nf)
        redshiftArr.tofile(nf)
        SfrArr.tofile(nf)
        MStellarArr.tofile(nf)
        ZArr.tofile(nf)
        nf.close()
        print 'file ' + filename + ' written succesfully.'

        return 1

    if nproc == 1:
        processes = read_lightcone_chunk(0, 1)
    else:
        print 'start processes'
        processes = [
            mp.Process(target=read_lightcone_chunk, args=(ip, nproc))
            for ip in range(nproc)
        ]
        for p in processes:
            p.start()

        for p in processes:
            p.join()

    return 1
コード例 #13
0
ファイル: get_all_lines.py プロジェクト: aaorsi/jpas_mock
def main(nproc,outfile):
  """
  Creates files containing all emission line luminosities and
  magnitudes for lightcone galaxies.
  Calculation is split in a given number of processes, where
  each computes the emission lines of a chunk of data independently
  and outputs the results to a file.

  Arguments:

  nproc = number of processes
  outfile = Output file name. (final name will be followed by a number)

  """
# nproc = argv[0]
# outfile = argv[1]

# if (len(argv) < 2):
#   print 'you need to provide 2 arguments: nproc outfile.'
#   print 'Exiting..'
#   return 0

  nproc = int(nproc)

  IncludeMags = True

  print 'nproc:',nproc,' outfile:',outfile
  sys.stdout.flush()
  #L_line  = 1215.67  # Angstroms
  L_line  = 3727.0  # Angstroms
  #Lyaz,izr,GalArr,Vol = get_lya(zrange)

  FiltArr,wrange = rf.read_filters()
  jpaslims = jp.get_jpaslims()

  app_type = 1  # 0 means per 3 arcsec diameter, 1 means per square arcsec
  cosmo = FlatLambdaCDM(H0=73, Om0=0.25)
  zrArr = comparat_zranges()

  zminlist = map(float,zrArr['zmin'])
  zmaxlist = map(float,zrArr['zmax'])
  minz = np.min(zminlist)
  maxz = np.max(zmaxlist)
  #maxz = np.max(zrArr['zmax'])

  print minz,maxz
  minsfr = 0.1

  nFil = len(FiltArr['w'])
  CentralW = np.zeros(nFil)
  int_ab = np.zeros(nFil)
  p10p90W = np.zeros([nFil,2])

  for i in range(nFil):
    CentralW[i] = wp.quantile(FiltArr['w'][i],FiltArr['t'][i],0.5)
    nz = np.where(FiltArr['w'][i] != 0)
    int_ab[i] = (integral.simps(FiltArr['t'][i][nz]/FiltArr['w'][i][nz],FiltArr['w'][i][nz]))
    p10p90W[i,0] = wp.quantile(FiltArr['w'][i][nz],FiltArr['t'][i][nz],0.1)
    p10p90W[i,1] = wp.quantile(FiltArr['w'][i][nz],FiltArr['t'][i][nz],0.9)
    print 'int_ab[i]',int_ab[i]

  print 'loading lightcone data'
  props = ['redshift','pos','Mz','Mcold','sfr','vel','stellarmass']
  print 'now loading photo-ionisation grid'
  lineinfo,linesarr = read_photoion()
  nline = lineinfo['nlines']
  usezspace = 1
  
  # magtype stores both the value of the magnitude (float) and the
  # filter id (int) where that magnitude was computed.

  magtype = np.dtype('f4, i4')
  def read_lightcone_chunk(ip, nproc):
    GalArr,lLyc,ngg,DistNz,zdist = readmock_chunk(ip,nproc,props_array = props,
                                   zspace=usezspace,sfrmin=500)

    
    zcold = GalArr['Mcold']/GalArr['Mz']
    qpar = qZrelation(zcold)  # assuming default pars.

    # This stores all line luminosities for all galaxies
    # LinesLumArr[i,j] = Luminosity of line j for galaxy i.
    LinesLumArr = np.zeros((ngg,nline))
    redshiftArr = np.zeros(ngg)
    SfrArr = np.zeros(ngg)
    MStellarArr = np.zeros(ngg)
    ZArr        = np.zeros(ngg)
    print 'ip '+str(ip)+', computing lines for  ngals=',ngg,' galaxies...'
    sys.stdout.flush()
    for ig in range(ngg):
      LinesLumArr[ig,:] = integ_line(lineinfo,linesarr,qpar[ig],zcold[ig],lLyc[ig],all_lines=True) 
      redshiftArr[ig] = GalArr['redshift'][ig]
      SfrArr[ig] = GalArr['sfr'][ig]
      MStellarArr[ig] = GalArr['stellarmass'][ig]
      ZArr[ig]        = zcold[ig]

#     LinesLumArr[ig,il] = iline
      
    print 'redshiftArr'  , redshiftArr[0:10]
    print 'Lines[0,:]'   , LinesLumArr[0,:]
    print 'Lines[10,:]'  , LinesLumArr[10,:]
    print 'Lines[100,:]' , LinesLumArr[100,:]
    print 'zarr[100,:]'  , ZArr[0:100]
    print 'Proc ip:'+str(ip)+' done with that.'

    # This stores the AB observed-frame apparent magnitude for all luminosities of all galaxies, indicating also to which filter
    # the stored magnitudes corresponds to.
    # MagsLumArr[i,j] = (AB magnitude, filter id) of line j of galaxy i.

    MagsLumArr = np.zeros((ngg,nline),dtype=magtype)
    realdist = np.sqrt(GalArr['pos'][:,0]**2 + GalArr['pos'][:,1]**2+GalArr['pos'][:,2]**2)
    log_dist = np.log10(realdist) + np.log10(mpc2cm_24)+24.0 + np.log10(1+GalArr['redshift'])

    if IncludeMags is True:
      for il in range(nline):
        L_line = lineinfo['lambda0'][il]
        wgal = L_line*(1 + GalArr['redshift'])
        log_Fline = LinesLumArr[:,il] - (np.log10(4*np.pi)+2*(log_dist))
        FLine = 10**log_Fline

        for i in range(ngg):
          idFilter,Val = find_nearest_vector(CentralW,wgal[i])
          
          if idFilter == 0:
            if wgal[i] < p10p90W[0,0]:
              MagsLumArr[i,il] = (-99,-99)
              continue
          elif idFilter == nFil-1:
            if wgal[i] > p10p90W[nFil-1,1]:
              MagsLumArr[i,il] = (99,99)
              continue
          else:
            nz = np.where(FiltArr['w'][idFilter] != 0)
            lamb = FiltArr['w'][idFilter][nz]
            tlamb = FiltArr['t'][idFilter][nz]
            tlam0 = np.interp(wgal[i],lamb,tlamb)
      # mag_app[i] = -2.5*(log_Fline[i]+ np.log10((wgal[i]*tlam0)/int_ab[idFilter]) - 18-np.log10(3.0)) - 48.60
            mag_app = -2.5*(log_Fline[i]+ np.log10((wgal[i]*tlam0)/int_ab[idFilter]) - 18-np.log10(3.0)) - 48.60

            MagsLumArr[i,il] = (mag_app, idFilter)
  
    filename = outfile + '.' + str(ip)
    nf = open(filename,"wb")
    print 'writing file '+filename
    nf.write(struct.pack('l',ngg))
    nf.write(struct.pack('i',nline))
    LinesLumArr.tofile(nf)
    if IncludeMags is True:
      MagsLumArr.tofile(nf)
    redshiftArr.tofile(nf)
    SfrArr.tofile(nf)
    MStellarArr.tofile(nf)
    ZArr.tofile(nf)
    nf.close()
    print 'file '+filename+' written succesfully.'
    
    return 1

  if nproc == 1:
    processes = read_lightcone_chunk(0,1)
  else:  
    print 'start processes'
    processes = [mp.Process(target=read_lightcone_chunk, args=(ip,nproc)) for ip in range(nproc)]
    for p in processes:
      p.start()

    for p in processes:
      p.join()


  return 1