def main(): """ Just runs some example code. """ # setup the flow flow = Flow(name="list files") listfiles = ListFiles() listfiles.config["dir"] = str(helper.get_data_dir()) listfiles.config["list_files"] = True listfiles.config["list_dirs"] = False listfiles.config["recursive"] = False listfiles.config["regexp"] = ".*.arff" flow.actors.append(listfiles) tee = Tee() flow.actors.append(tee) convert = Convert() convert.config["setup"] = conversion.PassThrough() tee.actors.append(convert) console = Console() console.config["prefix"] = "Match: " tee.actors.append(console) load = LoadDataset() load.config["use_custom_loader"] = True flow.actors.append(load) cross = CrossValidate() cross.config["setup"] = Classifier(classname="weka.classifiers.trees.J48", options=["-C", "0.3"]) flow.actors.append(cross) summary = EvaluationSummary() summary.config["matrix"] = True flow.actors.append(summary) # print flow flow.setup() print("\n" + flow.tree + "\n") # save the flow fname = tempfile.gettempdir() + os.sep + "simpleflow.json" Flow.save(flow, fname) # load flow fl2 = Flow.load(fname) # output flow fl2.setup() print("\n" + fl2.tree + "\n")
def main(): """ Just runs some example code. """ # setup the flow helper.print_title("build and evaluate classifier") iris = helper.get_data_dir() + os.sep + "iris.arff" flow = Flow(name="build and evaluate classifier") start = Start() flow.actors.append(start) build_save = Trigger() build_save.name = "build and store classifier" flow.actors.append(build_save) filesupplier = FileSupplier() filesupplier.config["files"] = [iris] build_save.actors.append(filesupplier) loaddataset = LoadDataset() build_save.actors.append(loaddataset) select = ClassSelector() select.config["index"] = "last" build_save.actors.append(select) ssv = SetStorageValue() ssv.config["storage_name"] = "data" build_save.actors.append(ssv) train = Train() train.config["setup"] = Classifier(classname="weka.classifiers.trees.J48") build_save.actors.append(train) pick = ContainerValuePicker() pick.config["value"] = "Model" build_save.actors.append(pick) ssv = SetStorageValue() ssv.config["storage_name"] = "model" pick.actors.append(ssv) evaluate = Trigger() evaluate.name = "evaluate classifier" flow.actors.append(evaluate) gsv = GetStorageValue() gsv.config["storage_name"] = "data" evaluate.actors.append(gsv) evl = Evaluate() evl.config["storage_name"] = "model" evaluate.actors.append(evl) summary = EvaluationSummary() summary.config["matrix"] = True evaluate.actors.append(summary) console = Console() evaluate.actors.append(console) # run the flow msg = flow.setup() if msg is None: print("\n" + flow.tree + "\n") msg = flow.execute() if msg is not None: print("Error executing flow:\n" + msg) else: print("Error setting up flow:\n" + msg) flow.wrapup() flow.cleanup()
def main(): """ Just runs some example code. """ # setup the flow helper.print_title("Cross-validate classifier") iris = helper.get_data_dir() + os.sep + "iris.arff" flow = Flow(name="cross-validate classifier") filesupplier = FileSupplier() filesupplier.config["files"] = [iris] flow.actors.append(filesupplier) loaddataset = LoadDataset() flow.actors.append(loaddataset) select = ClassSelector() select.config["index"] = "last" flow.actors.append(select) cv = CrossValidate() cv.config["setup"] = Classifier(classname="weka.classifiers.trees.J48") flow.actors.append(cv) branch = Branch() flow.actors.append(branch) seqsum = Sequence() seqsum.name = "summary" branch.actors.append(seqsum) summary = EvaluationSummary() summary.config["title"] = "=== J48/iris ===" summary.config["complexity"] = False summary.config["matrix"] = True seqsum.actors.append(summary) console = Console() seqsum.actors.append(console) seqerr = Sequence() seqerr.name = "errors" branch.actors.append(seqerr) errors = ClassifierErrors() errors.config["wait"] = False seqerr.actors.append(errors) seqroc = Sequence() seqroc.name = "roc" branch.actors.append(seqroc) roc = ROC() roc.config["wait"] = False roc.config["class_index"] = [0, 1, 2] seqroc.actors.append(roc) seqprc = Sequence() seqprc.name = "prc" branch.actors.append(seqprc) prc = PRC() prc.config["wait"] = True prc.config["class_index"] = [0, 1, 2] seqprc.actors.append(prc) # run the flow msg = flow.setup() if msg is None: print("\n" + flow.tree + "\n") msg = flow.execute() if msg is not None: print("Error executing flow:\n" + msg) else: print("Error setting up flow:\n" + msg) flow.wrapup() flow.cleanup()