コード例 #1
0
    def _runtest(self, num_walkers, num_cycles, dimension, debug_prints=False):
        print("Random walk simulation with: ")
        print("Dimension =", dimension)
        print("Probability =", self.probability)
        print("Number of Walkers", num_walkers)
        print("Number of Cycles", num_cycles)

        # set up initial state for walkers
        positions = np.zeros((1, dimension))

        init_state = WalkerState(positions=positions, time=0.0)

        # create list of init_walkers
        initial_weight = 1 / num_walkers
        init_walkers = []

        # init_walkers, n_cycles = get_final_state(path, num_walkers)
        init_walkers = [
            Walker(init_state, initial_weight) for i in range(num_walkers)
        ]

        # set up raunner for system
        runner = RandomWalkRunner(dimension=dimension,
                                  probability=self.probability)

        units = dict(UNIT_NAMES)
        # instantiate a revo unbindingboudaryconditiobs
        segment_length = 10

        # set up the reporter
        randomwalk_system_top_json = self.generate_topology()

        hdf5_reporter = WepyHDF5Reporter(self.hdf5_reporter_path,
                                         mode='w',
                                         save_fields=SAVE_FIELDS,
                                         topology=randomwalk_system_top_json,
                                         resampler=self.resampler,
                                         units=dict(UNITS),
                                         n_dims=dimension)
        # running the simulation
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=self.resampler,
                              work_mapper=Mapper(),
                              reporters=[hdf5_reporter])

        # run a simulation with the manager for n_steps cycles of length 1000 each
        steps = [segment_length for i in range(num_cycles)]
        print("Start simulation")

        sim_manager.run_simulation(num_cycles,
                                   steps,
                                   debug_prints=debug_prints)

        print("Finished Simulation")
コード例 #2
0
ubc = UnbindingBC(cutoff_distance=CUTOFF_DISTANCE,
                  initial_state=init_state,
                  topology=json_str_top,
                  ligand_idxs=np.array(test_sys.ligand_indices),
                  receptor_idxs=np.array(test_sys.receptor_indices))

## Reporters

# make a dictionary of units for adding to the HDF5
units = dict(UNIT_NAMES)

# open it in truncate mode first, then switch after first run
hdf5_reporter = WepyHDF5Reporter(file_path=hdf5_path,
                                 mode='w',
                                 save_fields=SAVE_FIELDS,
                                 resampler=resampler,
                                 boundary_conditions=ubc,
                                 topology=json_str_top,
                                 units=units)

dashboard_reporter = WExploreDashboardReporter(
    file_path='./outputs/wepy.dash.txt',
    mode='w',
    step_time=STEP_SIZE.value_in_unit(unit.second),
    max_n_regions=resampler.max_n_regions,
    max_region_sizes=resampler.max_region_sizes,
    bc_cutoff_distance=ubc.cutoff_distance)

reporters = [hdf5_reporter, dashboard_reporter]

## Work Mapper
コード例 #3
0
def main(n_runs,
         n_cycles,
         steps,
         n_walkers,
         n_workers=1,
         debug_prints=False,
         seed=None):
    ## Load objects needed for various purposes

    # load a json string of the topology
    with open(json_top_path, mode='r') as rf:
        sEH_TPPU_system_top_json = rf.read()

    # an openmm.State object for setting the initial walkers up
    with open(omm_state_path, mode='rb') as rf:
        omm_state = pickle.load(rf)

    ## set up the OpenMM Runner

    # load the psf which is needed for making a system in OpenMM with
    # CHARMM force fields
    psf = omma.CharmmPsfFile(charmm_psf_path)

    # set the box size lengths and angles
    lengths = [CUBE_LENGTH for i in range(3)]
    angles = [CUBE_ANGLE for i in range(3)]
    psf.setBox(*lengths, *angles)

    # charmm forcefields parameters
    params = omma.CharmmParameterSet(*charmm_param_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    system = psf.createSystem(params,
                              nonbondedMethod=omma.CutoffPeriodic,
                              nonbondedCutoff=NONBONDED_CUTOFF,
                              constraints=omma.HBonds)

    # make this a constant temperature and pressure simulation at 1.0
    # atm, 300 K, with volume move attempts every 50 steps
    barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE, VOLUME_MOVE_FREQ)

    # add it as a "Force" to the system
    system.addForce(barostat)

    # make an integrator object that is constant temperature
    integrator = omm.LangevinIntegrator(TEMPERATURE, FRICTION_COEFFICIENT,
                                        STEP_SIZE)

    # set up the OpenMMRunner with the system
    runner = OpenMMRunner(system, psf.topology, integrator, platform=PLATFORM)

    # the initial state, which is used as reference for many things
    init_state = OpenMMState(omm_state)

    ## Make the distance Metric

    # load the crystal structure coordinates
    crystal_traj = mdj.load_pdb(pdb_path)

    # get the atoms in the binding site according to the crystal structure
    bs_idxs = binding_site_atoms(crystal_traj.top, LIG_RESID,
                                 crystal_traj.xyz[0])
    lig_idxs = ligand_idxs(crystal_traj.top, LIG_RESID)
    prot_idxs = protein_idxs(crystal_traj.top)

    # make the distance metric with the ligand and binding site
    # indices for selecting atoms for the image and for doing the
    # alignments to only the binding site. All images will be aligned
    # to the reference initial state
    unb_distance = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    ## Make the resampler

    # make a Wexplore resampler with default parameters and our
    # distance metric
    resampler = WExploreResampler(distance=unb_distance,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Make the Boundary Conditions

    # makes ref_traj and selects lingand_atom and protein atom  indices
    # instantiate a revo unbindingboudaryconditiobs
    ubc = UnbindingBC(cutoff_distance=CUTOFF_DISTANCE,
                      initial_state=init_state,
                      topology=crystal_traj.topology,
                      ligand_idxs=lig_idxs,
                      receptor_idxs=prot_idxs)

    ## make the reporters

    # WepyHDF5

    # make a dictionary of units for adding to the HDF5
    # open it in truncate mode first, then switch after first run
    hdf5_reporter = WepyHDF5Reporter(
        hdf5_path,
        mode='w',
        # the fields of the State that will be saved in the HDF5 file
        save_fields=SAVE_FIELDS,
        # the topology in a JSON format
        topology=sEH_TPPU_system_top_json,
        # the resampler and boundary
        # conditions for getting data
        # types and shapes for saving
        resampler=resampler,
        boundary_conditions=ubc,
        # the units to save the fields in
        units=dict(UNITS),
        # sparse (in time) fields
        sparse_fields=dict(SPARSE_FIELDS),
        # sparse atoms fields
        main_rep_idxs=np.concatenate((lig_idxs, prot_idxs)),
        all_atoms_rep_freq=ALL_ATOMS_SAVE_FREQ)

    dashboard_reporter = WExploreDashboardReporter(
        dashboard_path,
        mode='w',
        step_time=STEP_SIZE.value_in_unit(unit.second),
        max_n_regions=resampler.max_n_regions,
        max_region_sizes=resampler.max_region_sizes,
        bc_cutoff_distance=ubc.cutoff_distance)

    setup_reporter = SetupReporter(setup_state_path, mode='w')

    restart_reporter = RestartReporter(restart_state_path, mode='w')

    reporters = [
        hdf5_reporter, dashboard_reporter, setup_reporter, restart_reporter
    ]

    ## The work mapper

    # we use a mapper that uses GPUs
    work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                               num_workers=n_workers)

    ## Combine all these parts and setup the simulation manager

    # set up parameters for running the simulation
    # initial weights
    init_weight = 1.0 / n_walkers

    # a list of the initial walkers
    init_walkers = [
        Walker(OpenMMState(omm_state), init_weight) for i in range(n_walkers)
    ]

    # Instantiate a simulation manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=ubc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### RUN the simulation
    for run_idx in range(n_runs):
        print("Starting run: {}".format(run_idx))
        sim_manager.run_simulation(n_cycles, steps, debug_prints=True)
        print("Finished run: {}".format(run_idx))
コード例 #4
0
ファイル: lj_revo.py プロジェクト: roussey1/wepy_activity
    hdf5_path = osp.join(outputs_dir, hdf5_filename)

    print("Number of steps: {}".format(n_steps))
    print("Number of cycles: {}".format(n_cycles))
    # # create the initial walkers
    init_weight = 1.0 / n_walkers
    init_walkers = [
        Walker(OpenMMState(omm_states[i], activity=np.array([0.])),
               init_weight) for i in range(n_walkers)
    ]

    hdf5_reporter = WepyHDF5Reporter(
        file_path=hdf5_path,
        mode='w',
        # save_fields set to None saves everything
        save_fields=None,
        resampler=resampler,
        boundary_conditions=None,
        topology=json_top,
        units=units)
    reporters = [hdf5_reporter]

    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=None,
                          work_mapper=mapper,
                          reporters=reporters)

    # make a number of steps for each cycle. In principle it could be
    # different each cycle
コード例 #5
0
ファイル: randomwalk.py プロジェクト: gitter-badger/wepy-1
    def _run(self, num_runs, num_cycles, num_walkers):
        """Runs a random walk simulation.

        Parameters
        ----------
        num_runs: int
            The number independet simulations.

        num_cycles: int

            The number of cycles that will be run in the simulation.

        num_walkers: int
            The number of walkers.

        """

        print("Random walk simulation with: ")
        print("Dimension = {}".format(self.dimension))
        print("Probability = {}".format(self.probability))
        print("Number of Walkers = {}".format(num_walkers))
        print("Number of Cycles ={}".format(num_cycles))

        # set up initial state for walkers
        positions = np.zeros((1, self.dimension))

        init_state = WalkerState(positions=positions, time=0.0)

        # create list of init_walkers
        initial_weight = 1 / num_walkers
        init_walkers = []

        init_walkers = [
            Walker(init_state, initial_weight) for i in range(num_walkers)
        ]

        # set up raunner for system
        runner = RandomWalkRunner(probability=self.probability)

        units = dict(UNIT_NAMES)
        # instantiate a revo unbindingboudaryconditiobs
        segment_length = 10

        # set up the reporter
        randomwalk_system_top_json = self.generate_topology()

        hdf5_reporter = WepyHDF5Reporter(file_path=self.hdf5_filename,
                                         mode='w',
                                         save_fields=SAVE_FIELDS,
                                         topology=randomwalk_system_top_json,
                                         resampler=self.resampler,
                                         units=dict(UNITS),
                                         n_dims=self.dimension)
        # running the simulation
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=self.resampler,
                              work_mapper=Mapper(),
                              reporters=[hdf5_reporter])

        # run a simulation with the manager for n_steps cycles of length 1000 each
        steps = [segment_length for i in range(num_cycles)]
        ### RUN the simulation
        for run_idx in range(num_runs):
            print("Starting run: {}".format(run_idx))
            sim_manager.run_simulation(num_cycles, steps)
            print("Finished run: {}".format(run_idx))

        print("Finished Simulation")