コード例 #1
0
    def _runtest(self, num_walkers, num_cycles, dimension, debug_prints=False):
        print("Random walk simulation with: ")
        print("Dimension =", dimension)
        print("Probability =", self.probability)
        print("Number of Walkers", num_walkers)
        print("Number of Cycles", num_cycles)

        # set up initial state for walkers
        positions = np.zeros((1, dimension))

        init_state = WalkerState(positions=positions, time=0.0)

        # create list of init_walkers
        initial_weight = 1 / num_walkers
        init_walkers = []

        # init_walkers, n_cycles = get_final_state(path, num_walkers)
        init_walkers = [
            Walker(init_state, initial_weight) for i in range(num_walkers)
        ]

        # set up raunner for system
        runner = RandomWalkRunner(dimension=dimension,
                                  probability=self.probability)

        units = dict(UNIT_NAMES)
        # instantiate a revo unbindingboudaryconditiobs
        segment_length = 10

        # set up the reporter
        randomwalk_system_top_json = self.generate_topology()

        hdf5_reporter = WepyHDF5Reporter(self.hdf5_reporter_path,
                                         mode='w',
                                         save_fields=SAVE_FIELDS,
                                         topology=randomwalk_system_top_json,
                                         resampler=self.resampler,
                                         units=dict(UNITS),
                                         n_dims=dimension)
        # running the simulation
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=self.resampler,
                              work_mapper=Mapper(),
                              reporters=[hdf5_reporter])

        # run a simulation with the manager for n_steps cycles of length 1000 each
        steps = [segment_length for i in range(num_cycles)]
        print("Start simulation")

        sim_manager.run_simulation(num_cycles,
                                   steps,
                                   debug_prints=debug_prints)

        print("Finished Simulation")
コード例 #2
0
        n_walkers = int(sys.argv[3])

        print("Number of steps: {}".format(n_steps))
        print("Number of cycles: {}".format(n_cycles))

        # create the initial walkers
        init_weight = 1.0 / n_walkers
        init_walkers = [
            Walker(OpenMMState(init_sim_state), init_weight)
            for i in range(n_walkers)
        ]

        # initialize the simulation manager
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=resampler,
                              boundary_conditions=ubc,
                              work_mapper=mapper,
                              reporters=reporters)

        # make a number of steps for each cycle. In principle it could be
        # different each cycle
        steps = [n_steps for i in range(n_cycles)]

        # actually run the simulation
        print("Starting run: {}".format(0))
        sim_manager.run_simulation(n_cycles, steps)
        print("Finished run: {}".format(0))

        print("Finished first file")
コード例 #3
0
ファイル: we.py プロジェクト: fabian-paul/wepy
        print("Number of steps: {}".format(n_steps))
        print("Number of cycles: {}".format(n_cycles))

        # create the initial walkers
        init_weight = 1.0 / n_walkers
        init_walkers = [
            Walker(OpenMMState(init_sim_state), init_weight)
            for i in range(n_walkers)
        ]

        # initialize the simulation manager
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=resampler,
                              boundary_conditions=ubc,
                              work_mapper=mapper,
                              reporters=reporters)

        # make a number of steps for each cycle. In principle it could be
        # different each cycle
        steps = [n_steps for i in range(n_cycles)]

        # actually run the simulations
        print("Running Simulations")
        for run_idx in range(n_runs):
            print("Starting run: {}".format(run_idx))
            sim_manager.run_simulation(n_cycles, steps, debug_prints=True)
            print("Finished run: {}".format(run_idx))

        print("Finished first file")
コード例 #4
0
def main(n_runs,
         n_cycles,
         steps,
         n_walkers,
         n_workers=1,
         debug_prints=False,
         seed=None):
    ## Load objects needed for various purposes

    # load a json string of the topology
    with open(json_top_path, mode='r') as rf:
        sEH_TPPU_system_top_json = rf.read()

    # an openmm.State object for setting the initial walkers up
    with open(omm_state_path, mode='rb') as rf:
        omm_state = pickle.load(rf)

    ## set up the OpenMM Runner

    # load the psf which is needed for making a system in OpenMM with
    # CHARMM force fields
    psf = omma.CharmmPsfFile(charmm_psf_path)

    # set the box size lengths and angles
    lengths = [CUBE_LENGTH for i in range(3)]
    angles = [CUBE_ANGLE for i in range(3)]
    psf.setBox(*lengths, *angles)

    # charmm forcefields parameters
    params = omma.CharmmParameterSet(*charmm_param_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    system = psf.createSystem(params,
                              nonbondedMethod=omma.CutoffPeriodic,
                              nonbondedCutoff=NONBONDED_CUTOFF,
                              constraints=omma.HBonds)

    # make this a constant temperature and pressure simulation at 1.0
    # atm, 300 K, with volume move attempts every 50 steps
    barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE, VOLUME_MOVE_FREQ)

    # add it as a "Force" to the system
    system.addForce(barostat)

    # make an integrator object that is constant temperature
    integrator = omm.LangevinIntegrator(TEMPERATURE, FRICTION_COEFFICIENT,
                                        STEP_SIZE)

    # set up the OpenMMRunner with the system
    runner = OpenMMRunner(system, psf.topology, integrator, platform=PLATFORM)

    # the initial state, which is used as reference for many things
    init_state = OpenMMState(omm_state)

    ## Make the distance Metric

    # load the crystal structure coordinates
    crystal_traj = mdj.load_pdb(pdb_path)

    # get the atoms in the binding site according to the crystal structure
    bs_idxs = binding_site_atoms(crystal_traj.top, LIG_RESID,
                                 crystal_traj.xyz[0])
    lig_idxs = ligand_idxs(crystal_traj.top, LIG_RESID)
    prot_idxs = protein_idxs(crystal_traj.top)

    # make the distance metric with the ligand and binding site
    # indices for selecting atoms for the image and for doing the
    # alignments to only the binding site. All images will be aligned
    # to the reference initial state
    unb_distance = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    ## Make the resampler

    # make a Wexplore resampler with default parameters and our
    # distance metric
    resampler = WExploreResampler(distance=unb_distance,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Make the Boundary Conditions

    # makes ref_traj and selects lingand_atom and protein atom  indices
    # instantiate a revo unbindingboudaryconditiobs
    ubc = UnbindingBC(cutoff_distance=CUTOFF_DISTANCE,
                      initial_state=init_state,
                      topology=crystal_traj.topology,
                      ligand_idxs=lig_idxs,
                      receptor_idxs=prot_idxs)

    ## make the reporters

    # WepyHDF5

    # make a dictionary of units for adding to the HDF5
    # open it in truncate mode first, then switch after first run
    hdf5_reporter = WepyHDF5Reporter(
        hdf5_path,
        mode='w',
        # the fields of the State that will be saved in the HDF5 file
        save_fields=SAVE_FIELDS,
        # the topology in a JSON format
        topology=sEH_TPPU_system_top_json,
        # the resampler and boundary
        # conditions for getting data
        # types and shapes for saving
        resampler=resampler,
        boundary_conditions=ubc,
        # the units to save the fields in
        units=dict(UNITS),
        # sparse (in time) fields
        sparse_fields=dict(SPARSE_FIELDS),
        # sparse atoms fields
        main_rep_idxs=np.concatenate((lig_idxs, prot_idxs)),
        all_atoms_rep_freq=ALL_ATOMS_SAVE_FREQ)

    dashboard_reporter = WExploreDashboardReporter(
        dashboard_path,
        mode='w',
        step_time=STEP_SIZE.value_in_unit(unit.second),
        max_n_regions=resampler.max_n_regions,
        max_region_sizes=resampler.max_region_sizes,
        bc_cutoff_distance=ubc.cutoff_distance)

    setup_reporter = SetupReporter(setup_state_path, mode='w')

    restart_reporter = RestartReporter(restart_state_path, mode='w')

    reporters = [
        hdf5_reporter, dashboard_reporter, setup_reporter, restart_reporter
    ]

    ## The work mapper

    # we use a mapper that uses GPUs
    work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                               num_workers=n_workers)

    ## Combine all these parts and setup the simulation manager

    # set up parameters for running the simulation
    # initial weights
    init_weight = 1.0 / n_walkers

    # a list of the initial walkers
    init_walkers = [
        Walker(OpenMMState(omm_state), init_weight) for i in range(n_walkers)
    ]

    # Instantiate a simulation manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=ubc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### RUN the simulation
    for run_idx in range(n_runs):
        print("Starting run: {}".format(run_idx))
        sim_manager.run_simulation(n_cycles, steps, debug_prints=True)
        print("Finished run: {}".format(run_idx))
コード例 #5
0
    n_cycles = 1

    # the number of MD dynamics steps for each cycle
    n_steps = 1000000
    steps = [n_steps for i in range(n_cycles)]

    # number of parallel simulations
    n_walkers = 10

    # the work mapper
    # work_mapper = ThreadMapper()

    work_mapper = Mapper()

    # create the initial walkers with equal weights
    with start_action(action_type="Init Walkers") as ctx:
         init_weight = 1.0 / n_walkers
         init_walkers = [Walker(copy(init_state), init_weight) for i in range(n_walkers)]

    with start_action(action_type="Init Sim Manager") as ctx:
         sim_manager = Manager(
             init_walkers,
             runner=runner,
             resampler=resampler,
             work_mapper=work_mapper)

# run the simulation and get the results
with start_action(action_type="Simulation") as ctx:
    final_walkers, _ = sim_manager.run_simulation(n_cycles, steps)

コード例 #6
0
def run_sim(init_state_path, json_top_path, forcefield_paths, n_cycles,
            n_steps, n_workers, **kwargs):

    #### Wepy Orchestrator

    # load the wepy.OpenMMState
    with open(init_state_path, 'rb') as rf:
        init_state = pickle.load(rf)

    ### Apparatus

    # Runner components

    # load the JSON for the topology
    with open(json_top_path) as rf:
        json_top_str = rf.read()

    # load it with mdtraj and then convert to openmm
    mdj_top = json_to_mdtraj_topology(json_top_str)
    omm_topology = mdj_top.to_openmm()

    # we need to use the box vectors for setting the simulation up,
    # paying mind to the units
    box_vectors = init_state['box_vectors'] * init_state.box_vectors_unit

    # set the box to the last box size from equilibration
    omm_topology.setPeriodicBoxVectors(box_vectors)

    # force field parameters
    force_field = omma.ForceField(*forcefield_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    runner_system = force_field.createSystem(omm_topology,
                                             nonbondedMethod=NONBONDED_METHOD,
                                             nonbondedCutoff=NONBONDED_CUTOFF,
                                             constraints=MD_CONSTRAINTS,
                                             rigidWater=RIGID_WATER,
                                             removeCMMotion=REMOVE_CM_MOTION,
                                             hydrogenMass=HYDROGEN_MASS)

    # barostat to keep pressure constant
    runner_barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE,
                                             VOLUME_MOVE_FREQ)
    # add it to the system
    runner_system.addForce(runner_barostat)

    # set up for a short simulation to runner and prepare
    # instantiate an integrator
    runner_integrator = omm.LangevinIntegrator(TEMPERATURE,
                                               FRICTION_COEFFICIENT, STEP_TIME)

    ## Runner
    runner = OpenMMRunner(runner_system,
                          omm_topology,
                          runner_integrator,
                          platform=PLATFORM)

    ## Resampler

    # Distance Metric

    # TODO set distance metric
    distance_metric = None

    # TODO set resampler
    resampler = None

    ## Boundary Conditions

    # TODO optional: set the boundary conditions
    bc = None

    # apparatus = WepySimApparatus(runner, resampler=resampler,
    #                              boundary_conditions=bc)

    print("created apparatus")

    ## CONFIGURATION

    # the idxs of the main representation to save in the output files,
    # it is just the protein and the ligand

    # TODO optional: set the main representation atom indices
    main_rep_idxs = None

    # REPORTERS
    # list of reporter classes and partial kwargs for using in the
    # orchestrator

    hdf5_reporter_kwargs = {
        'main_rep_idxs': main_rep_idxs,
        'topology': json_top_str,
        'resampler': resampler,
        'boundary_conditions': bc,
        # general parameters
        'save_fields': SAVE_FIELDS,
        'units': dict(UNITS),
        'sparse_fields': dict(SPARSE_FIELDS),
        'all_atoms_rep_freq': ALL_ATOMS_SAVE_FREQ
    }

    # get all the reporters together. Order is important since they
    # will get paired with the kwargs
    reporter_classes = [
        WepyHDF5Reporter,
    ]

    # collate the kwargs in the same order
    reporter_kwargs = [
        hdf5_reporter_kwargs,
    ]

    # make the configuration with all these reporters and the default number of workers
    configuration = Configuration(n_workers=DEFAULT_N_WORKERS,
                                  reporter_classes=reporter_classes,
                                  reporter_partial_kwargs=reporter_kwargs,
                                  config_name="no-orch")

    # then instantiate them
    reporters = configuration._gen_reporters()

    print("created configuration")

    ### Initial Walkers
    init_walkers = [
        Walker(deepcopy(init_state), INIT_WEIGHT) for _ in range(N_WALKERS)
    ]

    print("created init walkers")

    ### Orchestrator
    # orchestrator = Orchestrator(apparatus,
    #                             default_init_walkers=init_walkers,
    #                             default_configuration=configuration)

    ### Work Mapper
    if PLATFORM in ('OpenCL', 'CUDA'):
        # we use a mapper that uses GPUs
        work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                                   num_workers=n_workers)
    if PLATFORM in ('Reference', 'CPU'):
        # we just use the standard mapper
        work_mapper = Mapper

    ### Simulation Manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=bc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### Run the simulation
    steps = [n_steps for _ in range(n_cycles)]
    sim_manager.run_simulation(n_cycles, steps)
コード例 #7
0
def run_sim(init_state_path,
            json_top_path,
            forcefield_paths,
            n_cycles,
            n_steps,
            platform,
            n_workers,
            lig_ff=None,
            **kwargs):

    # add in the ligand force fields
    assert lig_ff is not None, "must give ligand forcefield"

    forcefield_paths.append(lig_ff)

    #### Wepy Orchestrator

    # load the wepy.OpenMMState
    with open(init_state_path, 'rb') as rf:
        init_state = pickle.load(rf)

    ### Apparatus

    # Runner components

    # load the JSON for the topology
    with open(json_top_path) as rf:
        json_top_str = rf.read()

    # load it with mdtraj and then convert to openmm
    mdj_top = json_to_mdtraj_topology(json_top_str)
    omm_topology = mdj_top.to_openmm()

    # we need to use the box vectors for setting the simulation up,
    # paying mind to the units
    box_vectors = init_state['box_vectors'] * init_state.box_vectors_unit
    positions = init_state['positions'] * init_state.positions_unit

    # set the box to the last box size from equilibration
    omm_topology.setPeriodicBoxVectors(box_vectors)

    # force field parameters
    force_field = omma.ForceField(*forcefield_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    runner_system = force_field.createSystem(omm_topology,
                                             nonbondedMethod=NONBONDED_METHOD,
                                             nonbondedCutoff=NONBONDED_CUTOFF,
                                             constraints=MD_CONSTRAINTS,
                                             rigidWater=RIGID_WATER,
                                             removeCMMotion=REMOVE_CM_MOTION,
                                             hydrogenMass=HYDROGEN_MASS)

    # barostat to keep pressure constant
    runner_barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE,
                                             VOLUME_MOVE_FREQ)
    # add it to the system
    runner_system.addForce(runner_barostat)

    # set up for a short simulation to runner and prepare
    # instantiate an integrator
    runner_integrator = omm.LangevinIntegrator(TEMPERATURE,
                                               FRICTION_COEFFICIENT, STEP_TIME)

    ## Runner
    runner = OpenMMRunner(runner_system,
                          omm_topology,
                          runner_integrator,
                          platform=platform)

    ## Resampler

    # Distance Metric

    lig_idxs = ligand_idxs(json_top_str)
    prot_idxs = protein_idxs(json_top_str)
    bs_idxs = binding_site_idxs(json_top_str, positions, box_vectors, CUTOFF)

    # set distance metric
    distance_metric = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    # set resampler
    resampler = WExploreResampler(distance=distance_metric,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Boundary Conditions

    # optional: set the boundary conditions
    bc = None

    ## CONFIGURATION

    # the idxs of the main representation to save in the output files,
    # it is just the protein and the ligand

    # optional: set the main representation atom indices, set to None
    # to save all the atoms in the 'positions' field
    main_rep_idxs = np.concatenate((lig_idxs, prot_idxs))

    # REPORTERS
    # list of reporter classes and partial kwargs for using in the
    # orchestrator

    hdf5_reporter_kwargs = {
        'main_rep_idxs': main_rep_idxs,
        'topology': json_top_str,
        'resampler': resampler,
        'boundary_conditions': bc,
        # general parameters
        'save_fields': SAVE_FIELDS,
        'units': dict(UNITS),
        'sparse_fields': dict(SPARSE_FIELDS),
        'all_atoms_rep_freq': ALL_ATOMS_SAVE_FREQ
    }

    # get all the reporters together. Order is important since they
    # will get paired with the kwargs
    reporter_classes = [
        WepyHDF5Reporter,
    ]

    # collate the kwargs in the same order
    reporter_kwargs = [
        hdf5_reporter_kwargs,
    ]

    # make the configuration with all these reporters and the default
    # number of workers. Don't be thrown off by this. You don't need
    # this. It is just a convenient way to dynamically name the
    # outputs of the reporters and parametrize the workers and worker
    # mappers. This is mainly for use in the Orchestrator framework
    # but it is useful here just for batch naming everything.
    configuration = Configuration(n_workers=DEFAULT_N_WORKERS,
                                  reporter_classes=reporter_classes,
                                  reporter_partial_kwargs=reporter_kwargs,
                                  config_name="no-orch",
                                  mode='w')

    # then instantiate the reporters from the configuration. THis
    # localizes the file paths to outputs and applies the key-word
    # arguments specified above.
    reporters = configuration._gen_reporters()

    print("created configuration")

    ### Initial Walkers
    init_walkers = [
        Walker(deepcopy(init_state), INIT_WEIGHT) for _ in range(N_WALKERS)
    ]

    print("created init walkers")

    ### Work Mapper
    if platform in ('OpenCL', 'CUDA'):
        # we use a mapper that uses GPUs
        work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                                   num_workers=n_workers)

    elif platform in ('CPU', ):
        # for the CPU we can choose how many threads to use per walker.
        worker_attributes = {'num_threads': N_CPU_THREADS}
        work_mapper = WorkerMapper(worker_type=OpenMMCPUWorker,
                                   worker_attributes=worker_attributes,
                                   num_workers=n_workers)

    elif platform in ('Reference', ):
        # we just use the standard mapper for in serial
        work_mapper = Mapper

    ### Simulation Manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=bc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### Run the simulation
    steps = [n_steps for _ in range(n_cycles)]
    sim_manager.run_simulation(n_cycles, steps)
コード例 #8
0
        def print_sim_objs():

            print("init_walkers: ", get_size(init_walkers))

            print("runner: ", get_size(runner))
            print("resampler: ", get_size(resampler))
            print("ubc: ", get_size(ubc))
            print("mapper: ", get_size(mapper))

            print("hdf5_reporter: ", get_size(hdf5_reporter))
            print("dashboard_reporter: ", get_size(dashboard_reporter))

            print("sim_manager: ", get_size(sim_manager))
            print("steps: ", get_size(steps))

        sim_monitor = SimMonitor(reporter_order=reporter_order)

        # actually run the simulation
        print("Starting run")
        print("----------------------------------------")
        print_sim_objs()
        print("----------------------------------------\n")

        sim_manager.run_simulation(n_cycles, steps, sim_monitor=sim_monitor)

        print("Finished run")
        print("----------------------------------------")
        print_sim_objs()
        print("----------------------------------------\n")
コード例 #9
0
    def test_lj_sim_manager_openmm_integration_run(
        self,
        class_tmp_path_factory,
        boundary_condition_class,
        resampler_class,
        work_mapper_class,
        platform,
        lj_params,
        lj_omm_sys,
        lj_integrator,
        lj_reporter_classes,
        lj_reporter_kwargs,
        lj_init_walkers,
        lj_openmm_runner,
        lj_unbinding_bc,
        lj_wexplore_resampler,
        lj_revo_resampler,
    ):
        """Run all combinations of components in the fixtures for the smallest
        amount of time, just to make sure they all work together and don't give errors."""

        logging.getLogger().setLevel(logging.DEBUG)
        install_mp_handler()
        logging.debug("Starting the test")

        print("starting the test")

        # the configuration class gives us a convenient way to
        # parametrize our reporters for the locale
        from wepy.orchestration.configuration import Configuration

        # the runner
        from wepy.runners.openmm import OpenMMRunner

        # mappers
        from wepy.work_mapper.mapper import Mapper
        from wepy.work_mapper.worker import WorkerMapper
        from wepy.work_mapper.task_mapper import TaskMapper

        # the worker types for the WorkerMapper
        from wepy.work_mapper.worker import Worker
        from wepy.runners.openmm import OpenMMCPUWorker, OpenMMGPUWorker

        # the walker task types for the TaskMapper
        from wepy.work_mapper.task_mapper import WalkerTaskProcess
        from wepy.runners.openmm import OpenMMCPUWalkerTaskProcess, OpenMMGPUWalkerTaskProcess

        n_cycles = 1
        n_steps = 2
        num_workers = 2

        # generate the reporters and temporary directory for this test
        # combination

        tmpdir_template = 'lj_fixture_{plat}-{wm}-{res}-{bc}'
        tmpdir_name = tmpdir_template.format(plat=platform,
                                             wm=work_mapper_class,
                                             res=resampler_class,
                                             bc=boundary_condition_class)

        # make a temporary directory for this configuration to work with
        tmpdir = str(class_tmp_path_factory.mktemp(tmpdir_name))

        # make a config so that the reporters get parametrized properly
        reporters = Configuration(
            work_dir=tmpdir,
            reporter_classes=lj_reporter_classes,
            reporter_partial_kwargs=lj_reporter_kwargs).reporters

        steps = [n_steps for _ in range(n_cycles)]

        # choose the components based on the parametrization
        boundary_condition = None
        resampler = None

        walker_fixtures = [lj_init_walkers]
        runner_fixtures = [lj_openmm_runner]
        boundary_condition_fixtures = [lj_unbinding_bc]
        resampler_fixtures = [lj_wexplore_resampler, lj_revo_resampler]

        walkers = lj_init_walkers

        boundary_condition = [
            boundary_condition
            for boundary_condition in boundary_condition_fixtures
            if type(boundary_condition).__name__ == boundary_condition_class
        ][0]
        resampler = [
            resampler for resampler in resampler_fixtures
            if type(resampler).__name__ == resampler_class
        ][0]

        assert boundary_condition is not None
        assert resampler is not None

        # generate the work mapper given the type and the platform

        work_mapper_classes = {
            mapper_class.__name__: mapper_class
            for mapper_class in [Mapper, WorkerMapper, TaskMapper]
        }

        # # select the right one given the option
        # work_mapper_type = [mapper_type for mapper_type in work_mapper_classes
        #                     if type(mapper_type).__name__ == work_mapper_class][0]

        # decide based on the platform and the work mapper which
        # platform dependent components to build
        if work_mapper_class == 'Mapper':
            # then there is no settings
            work_mapper = Mapper()

        elif work_mapper_class == 'WorkerMapper':

            if platform == 'CUDA' or platform == 'OpenCL':
                work_mapper = WorkerMapper(num_workers=num_workers,
                                           worker_type=OpenMMGPUWorker,
                                           device_ids={
                                               '0': 0,
                                               '1': 1
                                           },
                                           proc_start_method='spawn')
            if platform == 'OpenCL':

                work_mapper = WorkerMapper(
                    num_workers=num_workers,
                    worker_type=OpenMMGPUWorker,
                    device_ids={
                        '0': 0,
                        '1': 1
                    },
                )

            elif platform == 'CPU':
                work_mapper = WorkerMapper(
                    num_workers=num_workers,
                    worker_type=OpenMMCPUWorker,
                    worker_attributes={'num_threads': 1})

            elif platform == 'Reference':
                work_mapper = WorkerMapper(
                    num_workers=num_workers,
                    worker_type=Worker,
                )

        elif work_mapper_class == 'TaskMapper':

            if platform == 'CUDA':
                work_mapper = TaskMapper(
                    num_workers=num_workers,
                    walker_task_type=OpenMMGPUWalkerTaskProcess,
                    device_ids={
                        '0': 0,
                        '1': 1
                    },
                    proc_start_method='spawn')

            elif platform == 'OpenCL':
                work_mapper = TaskMapper(
                    num_workers=num_workers,
                    walker_task_type=OpenMMGPUWalkerTaskProcess,
                    device_ids={
                        '0': 0,
                        '1': 1
                    })

            elif platform == 'CPU':
                work_mapper = TaskMapper(
                    num_workers=num_workers,
                    walker_task_type=OpenMMCPUWalkerTaskProcess,
                    worker_attributes={'num_threads': 1})

            elif platform == 'Reference':
                work_mapper = TaskMapper(
                    num_workers=num_workers,
                    worker_type=WalkerTaskProcess,
                )

        else:
            raise ValueError("Platform {} not recognized".format(platform))

        # initialize the runner with the platform
        runner = OpenMMRunner(lj_omm_sys.system,
                              lj_omm_sys.topology,
                              lj_integrator,
                              platform=platform)

        logging.debug("Constructing the manager")

        manager = Manager(walkers,
                          runner=runner,
                          boundary_conditions=boundary_condition,
                          resampler=resampler,
                          work_mapper=work_mapper,
                          reporters=reporters)

        # since different work mappers need different process start
        # methods for different platforms i.e. CUDA and linux fork
        # vs. spawn we choose the appropriate one for each method.

        logging.debug("Starting the simulation")

        walkers, filters = manager.run_simulation(n_cycles,
                                                  steps,
                                                  num_workers=num_workers)
コード例 #10
0
ファイル: randomwalk.py プロジェクト: gitter-badger/wepy-1
    def _run(self, num_runs, num_cycles, num_walkers):
        """Runs a random walk simulation.

        Parameters
        ----------
        num_runs: int
            The number independet simulations.

        num_cycles: int

            The number of cycles that will be run in the simulation.

        num_walkers: int
            The number of walkers.

        """

        print("Random walk simulation with: ")
        print("Dimension = {}".format(self.dimension))
        print("Probability = {}".format(self.probability))
        print("Number of Walkers = {}".format(num_walkers))
        print("Number of Cycles ={}".format(num_cycles))

        # set up initial state for walkers
        positions = np.zeros((1, self.dimension))

        init_state = WalkerState(positions=positions, time=0.0)

        # create list of init_walkers
        initial_weight = 1 / num_walkers
        init_walkers = []

        init_walkers = [
            Walker(init_state, initial_weight) for i in range(num_walkers)
        ]

        # set up raunner for system
        runner = RandomWalkRunner(probability=self.probability)

        units = dict(UNIT_NAMES)
        # instantiate a revo unbindingboudaryconditiobs
        segment_length = 10

        # set up the reporter
        randomwalk_system_top_json = self.generate_topology()

        hdf5_reporter = WepyHDF5Reporter(file_path=self.hdf5_filename,
                                         mode='w',
                                         save_fields=SAVE_FIELDS,
                                         topology=randomwalk_system_top_json,
                                         resampler=self.resampler,
                                         units=dict(UNITS),
                                         n_dims=self.dimension)
        # running the simulation
        sim_manager = Manager(init_walkers,
                              runner=runner,
                              resampler=self.resampler,
                              work_mapper=Mapper(),
                              reporters=[hdf5_reporter])

        # run a simulation with the manager for n_steps cycles of length 1000 each
        steps = [segment_length for i in range(num_cycles)]
        ### RUN the simulation
        for run_idx in range(num_runs):
            print("Starting run: {}".format(run_idx))
            sim_manager.run_simulation(num_cycles, steps)
            print("Finished run: {}".format(run_idx))

        print("Finished Simulation")