コード例 #1
0
ファイル: randomwalk.py プロジェクト: gitter-badger/wepy-1
    def generate_topology(self):
        """Creates a one-atom, dummy trajectory and topology for
        the randomwalk system using the mdtraj package.  Then creates a
        JSON format for the topology. This JSON string is used in making
        the WepyHDF5 reporter.

        Returns
        -------
        topology: str
            JSON string representing the topology of system being simulated.

        """
        n_atoms = 1
        data = []
        for i in range(n_atoms):
            data.append(
                dict(serial=i,
                     name="H",
                     element="H",
                     resSeq=i + 1,
                     resName="UNK",
                     chainID=0))

        data = pd.DataFrame(data)

        xyz = np.zeros((1, 1, 3))
        unitcell_lengths = 0.943 * np.ones((1, 3))
        unitcell_angles = 90 * np.ones((1, 3))

        top = mdj.Topology.from_dataframe(data,
                                          bonds=np.zeros((0, 2), dtype='int'))

        json_top_str = mdtraj_to_json_topology(top)

        return json_top_str
コード例 #2
0
ファイル: sim_maker.py プロジェクト: gitter-badger/wepy-1
    def json_top(cls):

        test_sys = cls.TEST_SYS()

        # convert to a JSON top
        json_top = mdtraj_to_json_topology(
            mdj.Topology.from_openmm(test_sys.topology))

        return json_top
コード例 #3
0
# between two walkers, for our scorer class
distance = PairDistance()

## Resampler
resampler = WExploreResampler(distance=distance,
                              init_state=init_state,
                              max_region_sizes=MAX_REGION_SIZES,
                              max_n_regions=MAX_N_REGIONS,
                              pmin=PMIN,
                              pmax=PMAX)

## Boundary Conditions

# the mdtraj here is needed for the distance function
mdtraj_topology = mdj.Topology.from_openmm(test_sys.topology)
json_str_top = mdtraj_to_json_topology(mdtraj_topology)

# initialize the unbinding boundary conditions
ubc = UnbindingBC(cutoff_distance=CUTOFF_DISTANCE,
                  initial_state=init_state,
                  topology=json_str_top,
                  ligand_idxs=np.array(test_sys.ligand_indices),
                  receptor_idxs=np.array(test_sys.receptor_indices))

## Reporters

# make a dictionary of units for adding to the HDF5
units = dict(UNIT_NAMES)

# open it in truncate mode first, then switch after first run
hdf5_reporter = WepyHDF5Reporter(file_path=hdf5_path,
コード例 #4
0
    charmm_psf_path = osp.join(inputs_dir, charmm_psf_filename)
    pdb_path = osp.join(inputs_dir, starting_coords_pdb)
    charmm_param_paths = [osp.join(inputs_dir, filename) for filename
                          in charmm_param_files]

    json_top_path = osp.join(inputs_dir, json_top_filename)
    omm_state_path = osp.join(inputs_dir, omm_state_filename)

    # load the charmm file for the topology
    psf = omma.CharmmPsfFile(charmm_psf_path)

    # load the coordinates
    pdb = mdj.load_pdb(pdb_path)

    # convert the mdtraj topology to a json one
    top_str = mdtraj_to_json_topology(pdb.topology)

    # write the JSON topology out
    with open(json_top_path, mode='w') as json_wf:
        json_wf.write(top_str)


    # to use charmm forcefields get your parameters
    params = omma.CharmmParameterSet(*charmm_param_paths)

    # set the box size lengths and angles
    lengths = [8.2435*unit.nanometer for i in range(3)]
    angles = [90*unit.degree for i in range(3)]
    psf.setBox(*lengths, *angles)

    # create a system using the topology method giving it a topology and
コード例 #5
0
ファイル: lj_revo.py プロジェクト: roussey1/wepy_activity
get_state_kwargs = dict(GET_STATE_KWARG_DEFAULTS)
random_pos = random.sample(range(1000), n_walkers)
walker_pos = pickle.load(open(f'inputs/{epsilon}eps_init_positions.pkl', 'rb'))

for i in range(n_walkers):
    # initiate the test system
    test_sys = LennardJonesPair(epsilon=epsilon * unit.kilocalories_per_mole)

    # change the box size
    # Vectors set in Vec3. unit=nanometers
    test_sys.system.setDefaultPeriodicBoxVectors([4, 0, 0], [0, 4, 0],
                                                 [0, 0, 4])
    system = test_sys.system
    omm_topology = test_sys.topology
    mdj_top = mdj.Topology.from_openmm(omm_topology)
    json_top = mdtraj_to_json_topology(mdj_top)

    # make the integrator and barostat
    integrator = omm.LangevinIntegrator(TEMPERATURE, FRICTION_COEFFICIENT,
                                        STEP_SIZE)

    # build the harmonic force
    total_lj = CustomBondForce("0.5*k*(r-r0)^2")
    total_lj.addPerBondParameter('k')
    total_lj.addPerBondParameter('r0')
    # param [0] is the spring constant, param [1] is the init distance (nm)
    total_lj.addBond(0, 1, [2000, 0.320 * unit.nanometer])
    system.addForce(total_lj)

    # load positions (randomy selects unrepreated position pairs from
    # a previously generated, well equilibrated system)
コード例 #6
0
ファイル: make_orchestrator.py プロジェクト: leelasdSI/wepy
# distance from the ligand in the crystal structure used to determine
# the binding site, used to align ligands in the Unbinding distance
# metric
BINDING_SITE_CUTOFF = 0.8 # in nanometers

# the residue id for the ligand so that it's indices can be determined
LIG_RESID = "2RV"

# Initial experimental coordinates
PDB = mdj.load_pdb(pdb_path)
EXPERIMENTAL_POSITIONS = PDB.xyz[0]
EXPERIMENTAL_OMM_POSITIONS = PDB.openmm_positions(frame=0)

# topologies
TOP_MDTRAJ = PDB.topology
TOP_JSON = mdtraj_to_json_topology(TOP_MDTRAJ)

# the protein, binding site, and ligand atoms
BS_IDXS = binding_site_atoms(TOP_MDTRAJ, LIG_RESID, EXPERIMENTAL_POSITIONS)
LIG_IDXS = ligand_idxs(TOP_MDTRAJ, LIG_RESID)
PROT_IDXS = protein_idxs(TOP_MDTRAJ)


# reporting parameters

# these are the properties of the states (i.e. from OpenMM) which will
# be saved into the HDF5
SAVE_FIELDS = ('positions', 'box_vectors', 'velocities')
# these are the names of the units which will be stored with each
# field in the HDF5
UNITS = UNIT_NAMES
コード例 #7
0
ファイル: convert_pdb.py プロジェクト: ADicksonLab/geomm
import numpy as np
import pandas as pd
import tables as pytables
import mdtraj as mdj
from wepy.util.mdtraj import mdtraj_to_json_topology
from wepy.util.json_top import json_top_chain_df, json_top_residue_df, json_top_atom_df

traj = mdj.load('../lysozyme_pxylene.pdb')

if osp.exists("outputs"):
    shutil.rmtree("outputs")
os.makedirs("outputs")

# the JSON format
json_top = mdtraj_to_json_topology(traj.top)

with open('outputs/lysozyme_pxylene.top.json', 'w') as wf:
    wf.write(json_top)

# FASTA residue sequence
fasta_str = traj.top.to_fasta(chain=0)
with open('outputs/lysozyme_pxylene.res.fasta', 'w') as wf:
    wf.write(fasta_str)

## topology tables

# Bonds

# you can get a table using mdtraj, but we just use the bonds here
mdj_atoms_df, bonds = traj.top.to_dataframe()