コード例 #1
0
def score(ref_trn=None, hyp_trn=None):

    # ref_trn="hello world"
    # hyp_trn="hello duck"

    ref_trn = "/Users/user/github/spoken_langauge_understanding/ms_speech_recognition_system/M1_Introduction/misc/ref.trn"
    hyp_trn = "/Users/user/github/spoken_langauge_understanding/ms_speech_recognition_system/M1_Introduction/misc/hyp.trn"

    ref_trn_list = normalize_sent(ref_trn)
    hyp_trn_list = normalize_sent(hyp_trn)

    for ref, hyp in zip(ref_trn_list, hyp_trn_list):
        num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(ref=ref, hyp=hyp)
        wer_result = (num_substitutions + num_deletions + num_insertions) / num_tokens

        print(wer_result)
        print("-----------------------------------")
        print("Sentence Error Rate")
        print("-----------------------------------")

        print("-----------------------------------")
        print("Word Error Rate")
        print("Sum: N={}, Err={}, Sub={}, Del={}, Ins={}".format(num_tokens, num_errors, \
                                                                 num_deletions, num_insertions, num_substitutions))
        print("Avg: N={}, Err={}%, Sub={}%, Del={}%, Ins={}%".format(
            num_tokens, percent_round_off(num_errors, num_tokens), \
            percent_round_off(num_deletions, num_tokens), percent_round_off(num_insertions, num_tokens), \
            percent_round_off(num_substitutions, num_tokens)))
        print("-----------------------------------")

    return
コード例 #2
0
def score(ref_trn=None, hyp_trn=None):
    sentence_error = 0
    num_words = 0
    word_error = 0
    sub_error = 0
    del_error = 0
    ins_error = 0

    ref_trn_tokens = {}
    hyp_trn_tokens = {}

    fh = open(ref_trn)
    for line in fh:
        ref_trn_tokens[line.split()[-1]] = line.split()[:-1]
    fh.close()

    fh = open(hyp_trn)
    for line in fh:
        hyp_trn_tokens[line.split()[-1]] = line.split()[:-1]
    fh.close()

    for key, value in ref_trn_tokens.items():
        num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(
            ref=value, hyp=hyp_trn_tokens[key])
        num_words += num_tokens
        if (num_errors != 0):
            sentence_error += 1
            word_error += num_errors
            sub_error += num_substitutions
            del_error += num_deletions
            ins_error += num_insertions

        print("id: {0:s}".format(key))
        print("Scores: N={0:d}, S={4:d}, D={2:d}, I={3:d}".format(
            num_tokens, num_errors, num_deletions, num_insertions,
            num_substitutions))
        print()

    print('---------------------------------')
    print('Sentence Error Rate:')
    print('Sum: N={0:d}, Err={1:d}'.format(len(ref_trn_tokens),
                                           sentence_error))
    print('Avg: N={0:d}, Err={1:0.2f}%'.format(
        len(ref_trn_tokens), 100 * sentence_error / len(ref_trn_tokens)))
    print('---------------------------------')
    print('Word Error Rate:')
    print('Sum: N={0:d}, Err={1:d}, Sub={2:d}, Del={3:d}, Ins={4:d}'.format(
        num_words, word_error, sub_error, del_error, ins_error))
    print(
        'Avg: N={0:d}, Err={1:0.2f}%, Sub={2:0.2f}%, Del={3:0.2f}%, Ins={4:0.2f}%'
        .format(num_words, 100 * word_error / num_words,
                100 * sub_error / num_words, 100 * del_error / num_words,
                100 * ins_error / num_words))

    return
コード例 #3
0
def score(ref_trn=None, hyp_trn=None):
    reference_string = ""
    hypothesis_string = ""
    num_sentences = 0
    num_words = 0
    num_sentences_error = 0
    num_deletions = 0
    num_insertions = 0
    num_substitutions = 0
    num_errors = 0
    with open(ref_trn) as reference, open(hyp_trn) as hypothesis:
        for lineR, lineH in zip(reference, hypothesis):
            num_sentences += 1

            id_pattern = re.compile(r'\(.+\)')

            id_ref_match = id_pattern.search(lineR)
            reference_string = lineR[:id_ref_match.start()]

            id_hyp_match = id_pattern.search(lineH)
            hypothesis_string = lineH[:id_hyp_match.start()]

            ref_word_list = reference_string.split()
            hyp_word_list = hypothesis_string.split()

            num_words += len(reference_string.split())
            #print(reference_string + id_ref_match[0])
            #print(hypothesis_string + id_hyp_match[0])

            tokens, edits, deletions, insertions, substitutions = wer.string_edit_distance(
                ref=ref_word_list, hyp=hyp_word_list)
            if deletions != 0 or insertions != 0 or substitutions != 0:
                num_sentences_error += 1
            num_errors += edits
            num_deletions += deletions
            num_insertions += insertions
            num_substitutions += substitutions

            print(f'''id: {id_ref_match[0]}
Scores: N={tokens}, E={edits}, D={deletions}, I={insertions}, S={substitutions}
           ''')
    print(f'''-----------------------------------
Sentence Error Rate:
Sum: N={num_sentences}, Err={num_sentences_error}
Avg: N={num_sentences}, Err={num_sentences_error/num_sentences*100:.2f}%
-----------------------------------
Word Error Rate:
Sum: N={num_words}, Err={num_errors}, Sub={num_substitutions}, Del={num_deletions}, Ins={num_insertions}
Avg: N={num_words}, Err={num_errors/num_words*100:.2f}%, Sub={num_substitutions/num_words*100:.2f}%, Del={num_deletions/num_words*100:.2f}%, Ins={num_insertions/num_words*100:.2f}%
-----------------------------------''')
    return
コード例 #4
0
def score(ref_trn=None, hyp_trn=None):
    ref_dict = read_trn(ref_trn)
    hyp_dict = read_trn(hyp_trn)
    assert len(ref_dict) == len(hyp_dict)
    word2idx = {}
    word_to_idx(ref_dict, word2idx)
    word_to_idx(hyp_dict, word2idx)

    Err = 0
    Sub = 0
    Del = 0
    Ins = 0
    Tks = 0
    ErrSen = 0
    for hyp_k, hyp_v in hyp_dict.items():
        if hyp_k not in ref_dict:
            raise RuntimeError("key {} not found in ref".format(hyp_k))
        if hyp_k == '3170-137482-0006':
            print("hi")
        ref_v = ref_dict[hyp_k]
        ref_s = sen_to_idxs(ref_v, word2idx)
        hyp_s = sen_to_idxs(hyp_v, word2idx)
        (N, E, D, I, S) = wer.string_edit_distance(ref_s, hyp_s)
        if E > 0:
            ErrSen = ErrSen + 1
        Tks = Tks + N
        Err = Err + E
        Sub = Sub + S
        Del = Del + D
        Ins = Ins + I

        print("id: ({})".format(hyp_k))
        print("Scores: N={}, S={}, D={}, I={}\n".format(N, S, D, I))

    N = len(ref_dict)
    print("-----------------------------------")
    print("Sentence Error Rate:")
    print("Sum: N={}, Err={}".format(N, ErrSen))
    print("Avg: N={}, Err={:0.2f}%".format(N, 100. * ErrSen / N))
    print("-----------------------------------")
    print("Word Error Rate:")
    print("Sum: N={}, Err={}, Sub={}, Del={}, Ins={}".format(
        Tks, Err, Sub, Del, Ins))
    print("Avg: N={}, Err={:0.2f}%, Sub={:0.2f}%, Del={:0.2f}%, Ins={:0.2f}%".
          format(Tks, 100. * Err / Tks, 100. * Sub / Tks, 100. * Del / Tks,
                 100. * Ins / Tks))
    print("-----------------------------------")
コード例 #5
0
def score(ref_trn=None, hyp_trn=None):

    wer_sum = wer_err = wer_del = wer_ins = wer_sub = 0
    ser_sum = ser_err = 0

    for ref_line, hyp_line in zip(open(ref_trn), open(hyp_trn)):
        ref_m = re.search('(.*) \((.*)\)', ref_line)
        hyp_m = re.search('(.*) \((.*)\)', hyp_line)
        track_id = ref_m.group(2)
        ref_string = ref_m.group(1).split()
        hyp_string = hyp_m.group(1).split()

        print("id: ({})".format(track_id))
        print("ref: {}".format(ref_string))
        print("hyp: {}".format(hyp_string))

        num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(
            ref=ref_string, hyp=hyp_string)
        print("Score N={} S={} D={} I={}".format(num_tokens, num_substitutions,
                                                 num_deletions,
                                                 num_insertions))

        wer_sum += num_tokens
        wer_err += num_errors
        wer_del += num_deletions
        wer_sub += num_substitutions
        wer_ins += num_insertions

        ser_sum += 1
        ser_err += 0 if num_errors == 0 else 1

        print("")

    print("-----------------")
    print("Sentence Error Rate:")
    print("Sum: N={} Err={}".format(ser_sum, ser_err))
    print("Avg: N={} Err={:.0%}".format(ser_sum, ser_err / ser_sum))
    print("-----------------")
    print("Sentence Error Rate:")
    print("Sum: N={} Err={} Sub={} Del={} Ins={}".format(
        wer_sum, wer_err, wer_sub, wer_del, wer_ins))
    print("Avg: N={} Err={:.0%} Sub={:.0%} Del={:.0%} Ins={:.0%}".format(
        wer_sum, wer_err / wer_sum, wer_sub / wer_sum, wer_del / wer_sum,
        wer_ins / wer_sum))
    print("-----------------")
    return
コード例 #6
0
def score(ref_trn=None, hyp_trn=None):
    ref = trn_to_dict('misc/ref.trn')
    hyp = trn_to_dict('misc/hyp.trn')
    n_error_sentences = 0
    n_sentences = 0
    n_word = 0
    n_error_word = 0
    total_del = 0
    total_insert = 0
    total_sub = 0
    for key in ref:
        hyp_trans = hyp.get(key)
        ref_trans = ref[key]
        num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(ref_trans, hyp_trans)
        n_word += num_tokens
        n_error_word += num_errors
        total_del += num_deletions
        total_insert += num_insertions
        total_sub += num_substitutions
        n_sentences += 1
        n_error_sentences += (1 if num_errors > 0 else 0)

    arg = {
                'nsentence': n_sentences,
                'n_error_sentence': n_error_sentences,
                'ser': n_error_sentences//n_sentences,
                'nwords': n_word,
                'nsub': num_substitutions,
                'ninsert': num_insertions,
                'ndel': num_deletions,
                'psub': num_substitutions/n_word * 100,
                'pins': num_insertions/n_word * 100,
                'pdel': num_deletions/n_word * 100,
                'wer': n_error_word/n_word * 100,
            }
    report_str = ('Total sendtences: {nsentence},\n'
    'Num sentences with an error: {n_error_sentence},\n'
    'SER: {ser},\n'
    'Total words: {nwords},\n'
    'nsub, ninsert, ndel: {nsub}, {ninsert}, {ndel},\n'
    'psub, pinsert, pdel: {psub}%, {pins}%, {pdel}%,\n'
    'WER: {wer}').format(**arg)
    print(report_str)
    return
コード例 #7
0
def score(ref_trn=None, hyp_trn=None):

    # Lectura de archivos .trf
    filehand_ref = open(ref_trn, 'r')
    filehand_hyp = open(hyp_trn, 'r')

    # Conteo de la cantidad de frases
    number_sentences = 0

    # Variable para contar las frases con errores
    sentences_error = 0

    # Palabras dentro del archivo REF
    reference_words = 0

    # Errores globales
    errors = 0
    sust = 0
    inser = 0
    delet = 0

    print('\nResultados:\n')
    # Loop dentro del archio REF
    while True:
        line_r = filehand_ref.readline()

        if not line_r:
            break

        number_sentences += 1
        line_list_r = line_r.split()

        # Separo una línea en PRHASE e ID
        phrase_ID = line_list_r.pop(-1)
        phrase_words_r = line_list_r

        reference_words = reference_words + len(phrase_words_r)

        # LOOP dentro de archivo HYP para cada linea del Archivo REF, usando el ID como tag

        while True:
            line_h = filehand_hyp.readline()
            line_list_h = line_h.split()

            if line_list_h[-1] == phrase_ID:
                line_list_h.pop(-1)
                phrase_words_h = line_list_h
                num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(
                    ref=phrase_words_r, hyp=phrase_words_h)

                errors = errors + num_errors
                sust = sust + num_substitutions
                inser = inser + num_insertions
                delet = delet + num_deletions

                WER = (num_substitutions + num_insertions +
                       num_deletions) / len(phrase_words_r)

                if not num_errors == 0:
                    sentences_error += 1

                print('ID:', phrase_ID, '\n'
                      'Palabras de referencia:', phrase_words_r, '\n'
                      'Palabras Adivinadas:', phrase_words_h, '\n'
                      'E:', num_errors, 'D:', num_deletions, 'S:',
                      num_substitutions, 'I:', num_insertions)

                break

    sentences_error_perc = round(sentences_error / number_sentences * 100)
    WER_global = round(errors / reference_words * 100)
    Del_global = round(delet / reference_words * 100)
    Sust_global = round(sust / reference_words * 100)
    Ins_global = round(inser / reference_words * 100)
    # Salida en formato text
    print('El numero de sentencias es:', number_sentences,
          '\nEl numero de Sentencias con errores es:', sentences_error, '\n'
          'El porcentaje de sentencias con errores es', sentences_error_perc,
          '% \n'
          'El numero total de palabras en el archivo REF es', reference_words,
          '\n'
          'Errores totales:', errors, 'WER:', Sust_global, '% \n'
          'Sustituciones totales:', sust, Sust_global, ' % \n'
          'Inserciones totales:', inser, Ins_global, ' % \n'
          'Supreciones totales:', delet, Del_global, ' % \n')

    return
コード例 #8
0
ファイル: M1_Score.py プロジェクト: mehtabjmi84/ASR
def score(ref_trn=None, hyp_trn=None):

    t_sen = 0
    t_esen = 0
    t_w = 0
    t_i = 0
    t_d = 0
    t_s = 0
    t_e = 0
    with open(ref_trn) as f1, open(hyp_trn) as f2:
        for x, y in zip(f1, f2):
            x = x.split()
            y = y.split()
            #try:
            #    x.remove('')
            #    y.remove('')
            #except:
            #    pass

            num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(
                ref=x, hyp=y)
            print("Id:" + str(x[len(x) - 1]) +
                  "Scores: N=%i ,S=%i ,D=%i ,I=%i" %
                  (num_tokens - 1, num_substitutions, num_deletions,
                   num_insertions))
            print("  ")
            t_sen = t_sen + 1
            if num_errors > 0:
                t_esen = t_esen + 1
            t_w = t_w + num_tokens - 1
            t_d = t_d + num_deletions
            t_s = t_s + num_substitutions
            t_i = t_i + num_insertions
            t_e = t_e + num_errors

    print("Sentence Error Rate:")
    print("Sum:  N=%i  ,Error Sentences=%i" % (t_sen, t_esen))
    print("Average:  N=%i  ,Error precentage=%f" % (t_sen,
                                                    (t_esen / t_sen) * 100))

    print("Word Error Rate:")
    print(
        "Sum:  N=%i  ,Total Error=%i, Substitution=%i, Deletion=%i, Insertion=%i"
        % (t_w, t_e, t_s, t_d, t_i))
    print(
        "Average:  N=%i  ,Error precentage=%f,Subs. Error precentage=%f,Del. Error precentage=%f,Inser. Error precentage=%f"
        % (t_w, (t_e / t_w) * 100, (t_s / t_w) * 100, (t_d / t_w) * 100,
           (t_i / t_w) * 100))

    return
コード例 #9
0
def score(ref_trn=None, hyp_trn=None):

    ref_trn_dic, hyp_trn_dic = build_transcriptions_dics(ref_trn, hyp_trn)

    total_num_of_words = 0
    total_num_of_ref_sent = len(ref_trn_dic)
    sentences_with_errors = 0
    total_errors = 0
    total_substitutions, total_insertions, total_deletions = 0, 0, 0

    for (key, value) in hyp_trn_dic.items():
        reference_string = ref_trn_dic[key]
        hypothesis_string = value
        for ref_word, hyp_word in zip(reference_string.split(),
                                      hypothesis_string.split()):

            num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(
                ref=ref_word, hyp=hyp_word)

            total_num_of_words += num_tokens
            total_errors += num_errors
            total_deletions += num_deletions
            total_insertions += num_insertions
            total_substitutions += num_substitutions

            if num_errors > 0:
                sentences_with_errors += 1

    print()
    print(
        "====================================================================")
    print("Total number of reference sentences: " + str(total_num_of_ref_sent))
    print("Num of sentences with error: " + str(sentences_with_errors))
    print("SER: " + __format_str(total_num_of_ref_sent, sentences_with_errors))

    print()
    print("Total number of:")
    print("\tWords: " + str(total_num_of_words))
    print("\tErrors: " + str(total_errors))
    print("\tDeletions: " + str(total_deletions))
    print("\tInsertions: " + str(total_insertions))
    print("\tSubstitutions: " + str(total_substitutions))

    print(
        "WER: " +
        __format_str(total_substitutions + total_insertions +
                     total_deletions, total_num_of_words))
    print(
        "====================================================================")

    return
コード例 #10
0
def score(ref_trn=None, hyp_trn=None):

    num_ref_sent, ref_dict = read_file(ref_trn)  #refernce transcription
    _, hyp_dict = read_file(hyp_trn)
    num_err_sents = 0  #number of sentences with errors
    total_ref_w = 0  #total number of reference words
    w_errors = 0  #total number of word errors
    total_deletions = 0
    total_insertions = 0
    total_substitutions = 0
    for k in ref_dict:
        if k in hyp_dict:
            #print(k)
            num_tokens, num_errors, num_deletions, num_insertions, num_substitutions = wer.string_edit_distance(
                ref_dict[k], hyp_dict[k])
            # print(num_tokens, num_errors, num_deletions, num_insertions, num_substitutions)
            total_ref_w += num_tokens  #increas number of reference words
            if num_errors != 0:
                num_err_sents += 1  #increase number of error sentences
                w_errors += num_errors  #increase number of error words
                total_deletions += num_deletions
                total_insertions += num_insertions
                total_substitutions += num_substitutions
    ###reports##
    WER = w_errors / total_ref_w  #word error rate
    SER = num_err_sents / num_ref_sent  #sentence error rate
    deletions_per = total_deletions / total_ref_w  #he percentage of deletions
    insertions_per = total_insertions / total_ref_w  #The percentage of insertions
    substitutions_per = total_substitutions / total_ref_w  #The percentage of substitutions

    output = """Total number of reference sentences in the test set: {} sentences \n  
               Number of sentences with an error :{} \n
               SER :{:2f} % \n 
               Total number of reference words : {} words \n 
               Total number of word errors : {} \n 
               Total number of word substitutions, insertions, and deletions : {} , {} , {}  \n
               WER :{:2f} % \n "
               percentage of substitutions, insertions, and deletions : {:2f} % ,{:2f} % , {:2f} % """.format(
        num_ref_sent, num_err_sents, 100 * SER, total_ref_w, w_errors,
        total_substitutions, total_insertions, total_deletions, 100 * WER,
        100 * substitutions_per, 100 * insertions_per, 100 * deletions_per)
    print(output)

    return WER, SER