def test_with_mask_groups(self): nbins = 100 nsets = 10 data = np.random.normal(size=(nsets, nbins, nbins)) mask = np.random.randint(2, size=data.shape).astype(np.uint8) rate_stats1 = StreamingStats2D((nbins, nbins)) for di, d in enumerate(data[:(nbins // 2)]): rate_stats1.update(d, mask[di]) rate_stats2 = StreamingStats2D((nbins, nbins)) for di, d in enumerate(data[(nbins // 2):]): rate_stats2.update(d, mask[di]) rate_stats3 = rate_stats1 + rate_stats2 rate_stats1 += rate_stats2 data_masked = np.ma.array(data, mask=mask) assert np.allclose(rate_stats1.mean, data_masked.mean(axis=0).filled(fill_value=0.0)) assert np.allclose(rate_stats1.var, data_masked.var(axis=0).filled(fill_value=0.0)) assert np.allclose(rate_stats3.mean, data_masked.mean(axis=0).filled(fill_value=0.0)) assert np.allclose(rate_stats3.var, data_masked.var(axis=0).filled(fill_value=0.0))
def test_nomask(self): nbins = 100 nsets = 10 data = np.random.normal(size=(nsets, nbins, nbins)) mask = np.zeros((nbins, nbins), np.uint8) rate_stats = StreamingStats2D((nbins, nbins)) for d in data: rate_stats.update(d, mask) assert np.allclose(rate_stats.mean, data.mean(axis=0)) assert np.allclose(rate_stats.var, data.var(axis=0, ))
def test_nomask_groups(self): nbins = 100 nsets = 10 data = np.random.normal(size=(nsets, nbins, nbins)) mask = np.zeros((nbins, nbins), np.uint8) rate_stats1 = StreamingStats2D((nbins, nbins)) for d in data[:(nbins // 2)]: rate_stats1.update(d, mask) rate_stats2 = StreamingStats2D((nbins, nbins)) for d in data[(nbins // 2):nbins]: rate_stats2.update(d, mask) rate_stats3 = rate_stats1 + rate_stats2 rate_stats1 += rate_stats2 assert np.allclose(rate_stats1.mean, data.mean(axis=0)) assert np.allclose(rate_stats1.var, data.var(axis=0, )) assert np.allclose(rate_stats3.mean, data.mean(axis=0)) assert np.allclose(rate_stats3.var, data.var(axis=0, ))
def test_with_mask(self): nbins = 100 nsets = 10 data = np.random.normal(size=(nsets, nbins, nbins)) mask = np.random.randint(2, size=data.shape).astype(np.uint8) rate_stats = StreamingStats2D((nbins, nbins)) for di, d in enumerate(data): rate_stats.update(d, mask[di]) data_masked = np.ma.array(data, mask=mask) assert np.allclose(rate_stats.mean, data_masked.mean(axis=0).filled(fill_value=0.0)) assert np.allclose(rate_stats.var, data_masked.var(axis=0).filled(fill_value=0.0))
def tuple2stats(stat_tuple): ndims = stat_tuple.M1.ndim assert ndims == 1 or ndims == 2 if ndims == 2: stats = StreamingStats2D(stat_tuple.M1.shape) elif ndims == 1: stats = StreamingStats1D(stat_tuple.M1.shape[0]) else: raise ValueError stats.M1 = stat_tuple.M1 stats.M2 = stat_tuple.M2 stats.n = stat_tuple.n return stats
def test_tuple2stats2D(self): StreamingStatsTuple = collections.namedtuple('StreamingStatsTuple', ['M1', 'M2', 'n']) nbins = 100 nsets = 10 data = np.random.normal(size=(nsets, nbins, nbins)) mask = np.zeros((nbins, nbins), np.uint8) rate_stats = StreamingStats2D((nbins, nbins)) for d in data: rate_stats.update(d, mask) c_rate_stats = StreamingStatsTuple(rate_stats.M1, rate_stats.M2, rate_stats.n) rate_stats2 = tuple2stats(c_rate_stats) assert np.allclose(rate_stats.M1, rate_stats2.M1) assert np.allclose(rate_stats.M2, rate_stats2.M2) assert np.allclose(rate_stats.n, rate_stats2.n) assert np.allclose(rate_stats.mean, rate_stats2.mean) assert np.allclose(rate_stats.var, rate_stats2.var)
def process_iter_chunk(bin_mapper, iter_indices, iter_data=None): '''Calculate the flux matrices and populations of a set of iterations specified by iter_indices. Optionally provide the necessary arrays to perform the calculation in iter_data. Otherwise get data from the data_manager directly. ''' data_manager = westpa.rc.get_data_manager() system = westpa.rc.get_system_driver() itercount = len(iter_indices) nbins = bin_mapper.nbins flux_stats = StreamingStats2D((nbins, nbins)) rate_stats = StreamingStats2D((nbins, nbins)) pop_stats = StreamingStats1D(nbins) nomask1d = np.zeros((nbins, ), np.uint8) nomask2d = np.zeros((nbins, nbins), np.uint8) rate_mask = np.zeros((nbins, nbins), np.uint8) flux_matrix = np.zeros((nbins, nbins), np.float64) rate_matrix = np.zeros((nbins, nbins), np.float64) population_vector = np.zeros((nbins, ), np.float64) pcoord_len = system.pcoord_len assign = bin_mapper.assign for iiter, n_iter in enumerate(iter_indices): flux_matrix.fill(0.0) population_vector.fill(0.0) if iter_data: iter_group_name = 'iter_{:0{prec}d}'.format( int(n_iter), prec=data_manager.iter_prec) iter_group = iter_data[iter_group_name] else: iter_group = data_manager.get_iter_group(n_iter) # first, account for the flux due to recycling # we access the hdf5 file directly to avoid nearly 50% overhead of creating a ton of # tiny newweightentry objects try: nwgroup = iter_group['new_weights'] except KeyError: # no new weight data pass else: if iter_data: index = None weights = nwgroup['weight'] prev_init_pcoords = nwgroup['prev_init_pcoord'] new_init_pcoords = nwgroup['new_init_pcoord'] else: index = nwgroup['index'][...] weights = index['weight'] prev_init_pcoords = nwgroup['prev_init_pcoord'][...] new_init_pcoords = nwgroup['new_init_pcoord'][...] prev_init_assignments = assign(prev_init_pcoords) new_init_assignments = assign(new_init_pcoords) flux_assign(weights, prev_init_assignments, new_init_assignments, flux_matrix) #for (weight,i,j) in izip (weights, prev_init_assignments, new_init_assignments): # flux_matrices[iiter,i,j] += weight del index del prev_init_pcoords, new_init_pcoords, prev_init_assignments, new_init_assignments, weights #iter_group = data_manager.get_iter_group(n_iter) if iter_data: weights = iter_group['weight'] initial_pcoords = iter_group['initial_pcoords'] final_pcoords = iter_group['final_pcoords'] else: weights = iter_group['seg_index']['weight'] initial_pcoords = iter_group['pcoord'][:, 0] final_pcoords = iter_group['pcoord'][:, pcoord_len - 1] initial_assignments = assign(initial_pcoords) final_assignments = assign(final_pcoords) flux_assign(weights, initial_assignments, final_assignments, flux_matrix) pop_assign(weights, initial_assignments, population_vector) flux_stats.update(flux_matrix, nomask2d) pop_stats.update(population_vector, nomask1d) calc_rates(flux_matrix, population_vector, rate_matrix, rate_mask) rate_stats.update(rate_matrix, rate_mask) del weights del initial_assignments, final_assignments del initial_pcoords, final_pcoords del iter_group # Create namedtuple proxies for the cython StreamingStats objects # since the typed memoryviews class variables do not seem to return # cleanly from the zmq workers c_flux_stats = StreamingStatsTuple(flux_stats.M1, flux_stats.M2, flux_stats.n) c_rate_stats = StreamingStatsTuple(rate_stats.M1, rate_stats.M2, rate_stats.n) c_pop_stats = StreamingStatsTuple(pop_stats.M1, pop_stats.M2, pop_stats.n) return c_flux_stats, c_rate_stats, c_pop_stats
def calculate(self, iter_start=None, iter_stop=None, n_blocks=1, queue_size=1): '''Read the HDF5 file and collect flux matrices and population vectors for each bin for each iteration in the range [iter_start, iter_stop). Break the calculation into n_blocks blocks. If the calculation is broken up into more than one block, queue_size specifies the maxmimum number of tasks in the work queue.''' iter_start = iter_start or 1 iter_stop = iter_stop or self.data_manager.current_iteration itercount = iter_stop - iter_start block_size = max(1, itercount // n_blocks) nbins = self.bin_mapper.nbins if n_blocks == 1: flux_stats_t, rate_stats_t, population_stats_t = process_iter_chunk( self.bin_mapper, list(range(iter_start, iter_stop))) flux_stats = tuple2stats(flux_stats_t) rate_stats = tuple2stats(rate_stats_t) population_stats = tuple2stats(population_stats_t) else: flux_stats = StreamingStats2D((nbins, nbins)) rate_stats = StreamingStats2D((nbins, nbins)) population_stats = StreamingStats1D(nbins) task_generator = self.task_generator(iter_start, iter_stop, block_size) for future in self.work_manager.submit_as_completed( task_generator, queue_size): chunk_flux_stats_t, chunk_rate_stats_t, chunk_pop_stats_t = future.get_result( ) chunk_flux_stats = tuple2stats(chunk_flux_stats_t) chunk_rate_stats = tuple2stats(chunk_rate_stats_t) chunk_pop_stats = tuple2stats(chunk_pop_stats_t) # Update statistics with chunked subsets flux_stats += chunk_flux_stats rate_stats += chunk_rate_stats population_stats += chunk_pop_stats self.average_flux = flux_stats.mean self.stderr_flux = np.nan_to_num( np.sqrt(flux_stats.var) / flux_stats.n) self.average_populations = population_stats.mean self.stderr_populations = np.nan_to_num( np.sqrt(population_stats.var) / population_stats.n) self.average_rate = rate_stats.mean self.stderr_rate = np.nan_to_num( np.sqrt(rate_stats.var) / rate_stats.n) assert ~np.any(np.isinf(self.stderr_flux)) assert ~np.any(np.isinf(self.stderr_rate)) assert ~np.any(np.isinf(self.stderr_populations))