コード例 #1
0
    def test_NewFromFeatureSet(self):
        """Fisher score calculation"""

        feature_set = FeatureSet_Discrete.NewFromFitFile(self.test_fit_path)
        feature_set.Normalize()
        result_weights = FisherFeatureWeights.NewFromFeatureSet(feature_set)

        # test weights generated from test-l.fit:
        # wndchrm classify -l -f1.0 -vtest_fit-l.weights test-l.fit test-l.fit
        target_weights = FisherFeatureWeights.NewFromFile(
            self.test_feat_weight_path)

        for target_val, res_val in zip(target_weights.values,
                                       result_weights.values):
            self.assertAlmostEqual(target_val, res_val, delta=self.epsilon)
コード例 #2
0
ファイル: test_WND5.py プロジェクト: nagyistoce/wnd-charm
class TestWND5Classification(unittest.TestCase):
    """WND5 Classification"""

    epsilon = 0.00001

    # Define paths to original files
    test_sig_path = join(test_dir, 't1_s01_c05_ij-l_precalculated.sig')
    test_fit_path = join(test_dir, 'test-l.fit')
    test_feat_wght_path = join(test_dir, 'test_fit-l.weights')
    test_tif_path = join(test_dir, 't1_s01_c05_ij.tif')

    # Here are the correct values that Python API needs to return:
    # wndchrm classify -l -f1.0 test-l.fit t1_s01_c05_ij.tif
    # t1_s01_c05_ij.tif	1.6e-27	0.083	0.917	*	4cell	3.835
    # wndchrm classify -l -f0.14765 test-l.fit t1_s01_c05_ij.tif
    # t1_s01_c05_ij.tif	3.23e-27	0.076	0.924	*	4cell	3.848
    # wndchrm classify -l -f0.0685 test-l.fit t1_s01_c05_ij.tif
    # t1_s01_c05_ij.tif	7.05e-27	0.069	0.931	*	4cell	3.862

    correct_marg_probs = {}
    correct_marg_probs[2919] = [0.083, 0.917]
    correct_marg_probs[431] = [0.076, 0.924]
    #correct_marg_probs[200] = [0.044, 0.956]
    # slight difference in marg probs due to my use of round() below
    correct_marg_probs[200] = [0.069, 0.931]

    # Load the original files once and only once for all this class's tests
    feature_set = FeatureSet_Discrete.NewFromFitFile(test_fit_path)
    feature_set.Normalize()

    test_sample = Signatures.NewFromSigFile(test_sig_path, test_tif_path)
    test_sample.Normalize(feature_set)

    all_weights = FisherFeatureWeights.NewFromFile(test_feat_wght_path)

    # --------------------------------------------------------------------------
    def Check(self, num_feats=None):
        weights = self.all_weights.Threshold(num_feats)
        feat_set = self.feature_set.FeatureReduce(weights.names)
        sample = self.test_sample.FeatureReduce(weights.names)
        result = DiscreteImageClassificationResult.NewWND5(
            feat_set, weights, sample)
        result_marg_probs = [ round( val, 3 ) \
          for val in result.marginal_probabilities ]
        self.assertSequenceEqual(self.correct_marg_probs[num_feats],
                                 result_marg_probs)

    # --------------------------------------------------------------------------
    def test_WND5_all_features(self):
        """WND5 classification with entire large feature set (2919 features)"""
        self.Check(2919)

    # --------------------------------------------------------------------------
    def test_WND5_15percent_threshold(self):
        """WND5 classification with large feature set 15% threshold (431 features)"""
        self.Check(431)

    # --------------------------------------------------------------------------
    def test_WND5_200_feat_threshold(self):
        """WND5 classification with large feature set & 200 feature threshold"""
        self.Check(200)