def __init__(self, key, mode, IV=None): if mode not in _FEEDBACK_MODES: raise ValueError("this mode is not supported") if mode == MODE_CBC: if IV is None: raise ValueError("this mode requires an 'IV' string") else: raise ValueError("this mode is not supported by this cipher") if self.key_size: if self.key_size != len(key): raise ValueError("key must be %d in length" % self.key_size) elif self._key_sizes: if len(key) not in self._key_sizes: raise ValueError("key must be %s in length" % self._key_sizes) else: if not len(key): raise ValueError("key must not be 0 in length") if IV is not None and len(IV) != self.block_size: raise ValueError("IV must be %d in length" % self.block_size) self._native_object = _ffi.new(self._native_type) self._enc = None self._dec = None self._key = t2b(key) if IV: self._IV = t2b(IV) else: self._IV = t2b("\0" * self.block_size)
def encrypt(self, string): """ Encrypts a non-empty string, using the key-dependent data in the object, and with the appropriate feedback mode. The string's length must be an exact multiple of the algorithm's block size or, in CFB mode, of the segment size. Returns a string containing the ciphertext. """ string = t2b(string) if not string or len(string) % self.block_size: raise ValueError( "string must be a multiple of %d in length" % self.block_size) if self._enc is None: self._enc = _ffi.new(self._native_type) ret = self._set_key(_ENCRYPTION) if ret < 0: raise WolfCryptError("Invalid key error (%d)" % ret) result = t2b("\0" * len(string)) ret = self._encrypt(result, string) if ret < 0: raise WolfCryptError("Encryption error (%d)" % ret) return result
def encrypt(self, string): """ Encrypts a non-empty string, using the key-dependent data in the object, and with the appropriate feedback mode. The string's length must be an exact multiple of the algorithm's block size or, in CFB mode, of the segment size. Returns a string containing the ciphertext. """ string = t2b(string) if not string or len(string) % self.block_size: raise ValueError("string must be a multiple of %d in length" % self.block_size) if self._enc is None: self._enc = _ffi.new(self._native_type) ret = self._set_key(_ENCRYPTION) if ret < 0: raise WolfCryptError("Invalid key error (%d)" % ret) result = t2b("\0" * len(string)) ret = self._encrypt(result, string) if ret < 0: raise WolfCryptError("Encryption error (%d)" % ret) return result
def vectors(): TestVector = namedtuple("TestVector", "digest") TestVector.__new__.__defaults__ = (None, ) * len(TestVector._fields) return { Sha: TestVector(digest=t2b("1b6182d68ae91ce0853bd9c6b6edfedd4b6a510d")), Sha256: TestVector(digest=t2b("96e02e7b1cbcd6f104fe1fdb4652027a" + "5505b68652b70095c6318f9dce0d1844")), Sha384: TestVector( digest=t2b("4c79d80531203a16f91bee325f18c6aada47f9382fe44fc1" + "1f92917837e9b7902f5dccb7d3656f667a1dce3460bc884b")), Sha512: TestVector(digest=t2b("88fcf67ffd8558d713f9cedcd852db47" + "9e6573f0bd9955610a993f609637553c" + "e8fff55e644ee8a106aae19c07f91b3f" + "2a2a6d40dfa7302c0fa6a1a9a5bfa03f")), HmacSha: TestVector(digest=t2b("5dfabcfb3a25540824867cd21f065f52f73491e0")), HmacSha256: TestVector(digest=t2b("4b641d721493d80f019d9447830ebfee" + "89234a7d594378b89f8bb73873576bf6")), HmacSha384: TestVector( digest=t2b("e72c72070c9c5c78e3286593068a510c1740cdf9dc34b512" + "ccec97320295db1fe673216b46fe72e81f399a9ec04780ab")), HmacSha512: TestVector(digest=t2b("c7f48db79314fc2b5be9a93fd58601a1" + "bf42f397ec7f66dba034d44503890e6b" + "5708242dcd71a248a78162d815c685f6" + "038a4ac8cb34b8bf18986dbd300c9b41")), }
def __init__(self, key = None): # pylint: disable=super-init-not-called _Rsa.__init__(self) # pylint: disable=non-parent-init-called idx = _ffi.new("word32*") idx[0] = 0 if key != None: key = t2b(key) ret = _lib.wc_RsaPrivateKeyDecode(key, idx, self.native_object, len(key)) if ret < 0: idx[0] = 0 ret = _lib.wc_GetPkcs8TraditionalOffset(key, idx, len(key)) if ret < 0: raise WolfCryptError("Invalid key error (%d)" % ret) ret = _lib.wc_RsaPrivateKeyDecode(key, idx, self.native_object, len(key)) if ret < 0: raise WolfCryptError("Invalid key error (%d)" % ret) self.size = len(key) self.output_size = _lib.wc_RsaEncryptSize(self.native_object) if self.output_size <= 0: # pragma: no cover raise WolfCryptError("Invalid key size error (%d)" % self.output_size)
def verify_raw(self, R, S, data): """ Verifies signature from its raw elements **R** and **S**, using the public key data in the object. Returns **True** in case of a valid signature, otherwise **False**. """ data = t2b(data) status = _ffi.new("int[1]") mpR = _ffi.new("mp_int[1]") mpS = _ffi.new("mp_int[1]") ret = _lib.mp_init(mpR) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) ret = _lib.mp_init(mpS) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) ret = _lib.mp_read_unsigned_bin(mpR, R, len(R)) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) ret = _lib.mp_read_unsigned_bin(mpS, S, len(S)) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) ret = _lib.wc_ecc_verify_hash_ex(mpR, mpS, data, len(data), status, self.native_object) if ret < 0: raise WolfCryptError("Verify error (%d)" % ret) return status[0] == 1
def decrypt(self, string): """ Decrypts **string**, using the key-dependent data in the object and with the appropriate feedback mode. The string's length must be an exact multiple of the algorithm's block size or, in CFB mode, of the segment size. Returns a string containing the plaintext. """ string = t2b(string) if not string or len(string) % self.block_size: raise ValueError( "string must be a multiple of %d in length" % self.block_size) if self._dec is None: self._dec = _ffi.new(self._native_type) ret = self._set_key(_DECRYPTION) if ret < 0: # pragma: no cover raise WolfCryptError("Invalid key error (%d)" % ret) result = _ffi.new("byte[%d]" % len(string)) ret = self._decrypt(result, string) if ret < 0: # pragma: no cover raise WolfCryptError("Decryption error (%d)" % ret) return _ffi.buffer(result)[:]
def decrypt(self, string): """ Decrypts **string**, using the key-dependent data in the object and with the appropriate feedback mode. The string's length must be an exact multiple of the algorithm's block size or, in CFB mode, of the segment size. Returns a string containing the plaintext. """ string = t2b(string) if not string: raise ValueError( "empty string not allowed") if len(string) % self.block_size and not "ChaCha" in self._native_type: raise ValueError( "string must be a multiple of %d in length" % self.block_size) if self._dec is None: self._dec = _ffi.new(self._native_type) ret = self._set_key(_DECRYPTION) if ret < 0: # pragma: no cover raise WolfCryptError("Invalid key error (%d)" % ret) result = _ffi.new("byte[%d]" % len(string)) ret = self._decrypt(result, string) if ret < 0: # pragma: no cover raise WolfCryptError("Decryption error (%d)" % ret) return _ffi.buffer(result)[:]
class TestHmacSha(unittest.TestCase): _class = HmacSha digest = t2b("5dfabcfb3a25540824867cd21f065f52f73491e0") def setUp(self): self.hash = self._class(_HMAC_KEY) def test_new(self): # update inside constructor assert self._class.new(_HMAC_KEY, "wolfcrypt").hexdigest() == self.digest def test_hash_update_001(self): self.hash.update("wolfcrypt") assert self.hash.hexdigest() == self.digest def test_hash_update_002(self): self.hash.update("wolf") self.hash.update("crypt") assert self.hash.hexdigest() == self.digest def test_hash_copy(self): copy = self.hash.copy() assert self.hash.hexdigest() == copy.hexdigest() self.hash.update("wolfcrypt") assert self.hash.hexdigest() != copy.hexdigest() copy.update("wolfcrypt") assert self.hash.hexdigest() == copy.hexdigest() == self.digest
def decode_key(self, key, pub = None): """ Decodes an ED25519 private + pub key """ key = t2b(key) if (len(key) < _lib.wc_ed25519_priv_size(self.native_object)/2): raise WolfCryptError("Key decode error: key too short") idx = _ffi.new("word32*") idx[0] = 0 if pub: ret = _lib.wc_ed25519_import_private_key(key, len(key), pub, len(pub), self.native_object); if ret < 0: raise WolfCryptError("Key decode error (%d)" % ret) else: ret = _lib.wc_ed25519_import_private_only(key, len(key), self.native_object); if ret < 0: raise WolfCryptError("Key decode error (%d)" % ret) pubkey = _ffi.new("byte[%d]" % (self.size * 4)) ret = _lib.wc_ed25519_make_public(self.native_object, pubkey, self.size) if ret < 0: raise WolfCryptError("Public key generate error (%d)" % ret) ret = _lib.wc_ed25519_import_public(pubkey, self.size, self.native_object); if self.size <= 0: # pragma: no cover raise WolfCryptError("Key decode error (%d)" % self.size) if self.max_signature_size <= 0: # pragma: no cover raise WolfCryptError( "Key decode error (%d)" % self.max_signature_size)
def vectors(): TestVector = namedtuple("TestVector", "digest") TestVector.__new__.__defaults__ = (None, ) * len(TestVector._fields) # test vector dictionary vectorArray = {} if _lib.SHA_ENABLED: vectorArray[Sha] = TestVector( digest=t2b("1b6182d68ae91ce0853bd9c6b6edfedd4b6a510d")) if _lib.SHA256_ENABLED: vectorArray[Sha256] = TestVector( digest=t2b("96e02e7b1cbcd6f104fe1fdb4652027a" + "5505b68652b70095c6318f9dce0d1844")) if _lib.SHA384_ENABLED: vectorArray[Sha384] = TestVector( digest=t2b("4c79d80531203a16f91bee325f18c6aada47f9382fe44fc1" + "1f92917837e9b7902f5dccb7d3656f667a1dce3460bc884b")) if _lib.SHA512_ENABLED: vectorArray[Sha512] = TestVector( digest=t2b("88fcf67ffd8558d713f9cedcd852db47" + "9e6573f0bd9955610a993f609637553c" + "e8fff55e644ee8a106aae19c07f91b3f" + "2a2a6d40dfa7302c0fa6a1a9a5bfa03f")) if _lib.SHA3_ENABLED: vectorArray[Sha3] = TestVector( digest=t2b("6170dedf06f83c3305ec18b7558384a5" + "a62d86e42c143d416aaec32f971986c1" + "e84edf61df308cc6d8c310d1956e1908")) if _lib.HMAC_ENABLED: if _lib.SHA_ENABLED: vectorArray[HmacSha] = TestVector( digest=t2b("5dfabcfb3a25540824867cd21f065f52f73491e0")) if _lib.SHA256_ENABLED: vectorArray[HmacSha256] = TestVector( digest=t2b("4b641d721493d80f019d9447830ebfee" + "89234a7d594378b89f8bb73873576bf6")) if _lib.SHA384_ENABLED: vectorArray[HmacSha384] = TestVector( digest=t2b("e72c72070c9c5c78e3286593068a510c1740cdf9dc34b512" + "ccec97320295db1fe673216b46fe72e81f399a9ec04780ab")) if _lib.SHA512_ENABLED: vectorArray[HmacSha512] = TestVector( digest=t2b("c7f48db79314fc2b5be9a93fd58601a1" + "bf42f397ec7f66dba034d44503890e6b" + "5708242dcd71a248a78162d815c685f6" + "038a4ac8cb34b8bf18986dbd300c9b41")) return vectorArray
def vectors(): TestVector = namedtuple("TestVector", "digest") TestVector.__new__.__defaults__ = (None, ) * len(TestVector._fields) # test vector dictionary vectorArray = {} if _lib.SHA_ENABLED: vectorArray[Sha] = TestVector( digest=t2b("1b6182d68ae91ce0853bd9c6b6edfedd4b6a510d")) if _lib.SHA256_ENABLED: vectorArray[Sha256] = TestVector( digest=t2b("96e02e7b1cbcd6f104fe1fdb4652027a" + "5505b68652b70095c6318f9dce0d1844")) if _lib.SHA384_ENABLED: vectorArray[Sha384] = TestVector( digest=t2b("4c79d80531203a16f91bee325f18c6aada47f9382fe44fc1" + "1f92917837e9b7902f5dccb7d3656f667a1dce3460bc884b")) if _lib.SHA512_ENABLED: vectorArray[Sha512] = TestVector( digest=t2b("88fcf67ffd8558d713f9cedcd852db47" + "9e6573f0bd9955610a993f609637553c" + "e8fff55e644ee8a106aae19c07f91b3f" + "2a2a6d40dfa7302c0fa6a1a9a5bfa03f")) if _lib.SHA3_ENABLED: vectorArray[Sha3] = TestVector( digest=t2b("6170dedf06f83c3305ec18b7558384a5" + "a62d86e42c143d416aaec32f971986c1" + "e84edf61df308cc6d8c310d1956e1908")) if _lib.HMAC_ENABLED: if _lib.SHA_ENABLED: vectorArray[HmacSha] = TestVector( digest=t2b("7ab9aca2c87c7c45ba2ffa52f719fdbd8fbff62d")) if _lib.SHA256_ENABLED: vectorArray[HmacSha256] = TestVector(digest=t2b( "9041ac8c66fc350a1a0d5f4fff9d8ef74721d5a43ec8893a2" + "875cf69576c45c2")) if _lib.SHA384_ENABLED: vectorArray[HmacSha384] = TestVector(digest=t2b( "f8c589ddf5489404f85c3c718a8345f207fb1ed6c6f5ecb09" + "8e8be8aeb1aaa9f0c6dd84c141410b29a47a1a2b3a85ae0")) if _lib.SHA512_ENABLED: vectorArray[HmacSha512] = TestVector(digest=t2b( "7708a12ca110cd81a334bd4e8bddc4314acd3ed218bbff7c6" + "486e149fc145e9f5c05f05e919f7c2bc027266e986679984c" + "3ade1a14084ad7627a65c3671a2d05")) return vectorArray
class TestRsaPublic(unittest.TestCase): prv = "3082025C02010002818100BC730EA849F374A2A9EF18A5DA559921F9C8ECB36D" \ + "48E53535757737ECD161905F3ED9E4D5DF94CAC1A9D719DA86C9E84DC4613682" \ + "FEABAD7E7725BB8D11A5BC623AA838CC39A20466B4F7F7F3AADA4D020EBB5E8D" \ + "6948DC77C9280E22E96BA426BA4CE8C1FD4A6F2B1FEF8AAEF69062E5641EEB2B" \ + "3C67C8DC2700F6916865A902030100010281801397EAE8387825A25C04CE0D40" \ + "7C31E5C470CD9B823B5809863B665FDC3190F14FD5DB15DDDED73B9593311831" \ + "0E5EA3D6A21A716E81481C4BCFDB8E7A866132DCFB55C1166D279224458BF1B8" \ + "48B14B1DACDEDADD8E2FC291FBA5A96EF83A6AF1FD5018EF9FE7C3CA78EA56D3" \ + "D3725B96DD4E064E3AC3D9BE72B66507074C01024100FA47D47A7C923C55EF81" \ + "F041302DA3CF8F1CE6872705700DDF9835D6F18B382F24B5D084B6794F712994" \ + "5AF0646AACE772C6ED4D59983E673AF3742CF9611769024100C0C1820D0CEBC6" \ + "2FDC92F99D821A31E9E9F74BF282871CEE166AD11D188270F3C0B62FF6F3F71D" \ + "F18623C84EEB8F568E8FF5BFF1F72BB5CC3DC657390C1B54410241009D7E05DE" \ + "EDF4B7B2FBFC304B551DE32F0147966905CD0E2E2CBD8363B6AB7CB76DCA5B64" \ + "A7CEBE86DF3B53DE61D21EEBA5F637EDACAB78D94CE755FBD71199C102401898" \ + "1829E61E2739702168AC0A2FA172C121869538C65890A0579CBAE3A7B115C8DE" \ + "F61BC2612376EFB09D1C44BE1343396717C89DCAFBF545648B38822CF2810240" \ + "3989E59C195530BAB7488C48140EF49F7E779743E1B419353123759C3B44AD69" \ + "1256EE0061641666D37C742B15B4A2FEBF086B1A5D3F9012B105863129DBD9E2" pub = "30819F300D06092A864886F70D010101050003818D0030818902818100BC730E" \ + "A849F374A2A9EF18A5DA559921F9C8ECB36D48E53535757737ECD161905F3ED9" \ + "E4D5DF94CAC1A9D719DA86C9E84DC4613682FEABAD7E7725BB8D11A5BC623AA8" \ + "38CC39A20466B4F7F7F3AADA4D020EBB5E8D6948DC77C9280E22E96BA426BA4C" \ + "E8C1FD4A6F2B1FEF8AAEF69062E5641EEB2B3C67C8DC2700F6916865A90203010001" plain = t2b("Everyone gets Friday off.") def setUp(self): self.private = RsaPrivate(h2b(self.prv)) self.public = RsaPublic(h2b(self.pub)) def test_raises(self): # invalid key self.assertRaises(WolfCryptError, RsaPublic, 'key') def test_output_size(self): assert self.public.output_size == 1024 / 8 def test_encrypt_decrypt(self): cipher = self.public.encrypt(self.plain) result = self.private.decrypt(cipher) assert len(cipher) == self.public.output_size == 1024 / 8 assert self.plain == result def test_sign_verify(self): signature = self.private.sign(self.plain) result = self.public.verify(signature) assert len(signature) == self.public.output_size == 1024 / 8 assert self.plain == result
def test_multi_decryption(self): result = t2b("") segments = tuple(self.cipher[i:i + self.aes.block_size] \ for i in range(0, len(self.cipher), self.aes.block_size)) for segment in segments: result += self.aes.decrypt(segment) assert result == self.plain
def test_multi_encryption(self): result = t2b("") segments = tuple(self.plain[i:i + Des3.block_size] \ for i in range(0, len(self.plain), Des3.block_size)) for segment in segments: result += self.des3.encrypt(segment) assert result == self.cipher
def decrypt(self, ciphertext): """ Decrypts **ciphertext**, using the private key data in the object. The ciphertext's length must be equal to: **self.output_size** Returns a string containing the plaintext. """ ciphertext = t2b(ciphertext) plaintext = t2b("\0" * self.output_size) ret = _lib.wc_RsaPrivateDecrypt(ciphertext, len(ciphertext), plaintext, len(plaintext), self.native_object) if ret < 0: raise WolfCryptError("Decryption error (%d)" % ret) return plaintext[:ret]
def verify(self, signature): """ Verifies **signature**, using the public key data in the object. The signature's length must be equal to: **self.output_size** Returns a string containing the plaintext. """ signature = t2b(signature) plaintext = t2b("\0" * self.output_size) ret = _lib.wc_RsaSSL_Verify(signature, len(signature), plaintext, len(plaintext), self.native_object) if ret < 0: raise WolfCryptError("Verify error (%d)" % ret) return plaintext[:ret]
def __init__(self, key, string=None): # pylint: disable=W0231 key = t2b(key) self._native_object = _ffi.new(self._native_type) ret = self._init(self._type, key) if ret < 0: # pragma: no cover raise WolfCryptError("Hmac init error (%d)" % ret) if string: self.update(string)
def __init__(self, key, string=None): key = t2b(key) self._native_object = _ffi.new(self._native_type) ret = self._init(self._type, key) if ret < 0: raise WolfCryptError("Hmac init error (%d)" % ret) if (string): self.update(string)
def bytes(self, length): """ Generate and return a random sequence of length bytes. """ result = t2b("\0" * length) ret = _lib.wc_RNG_GenerateBlock(self.native_object, result, length) if ret < 0: raise WolfCryptError("RNG generate block error (%d)" % ret) return result
def byte(self): """ Generate and return a random byte. """ result = t2b("\0") ret = _lib.wc_RNG_GenerateByte(self.native_object, result) if ret < 0: raise WolfCryptError("RNG generate byte error (%d)" % ret) return result
def sign(self, plaintext): """ Signs **plaintext**, using the private key data in the object. The plaintext's length must not be greater than: **self.output_size - self.RSA_MIN_PAD_SIZE** Returns a string containing the signature. """ plaintext = t2b(plaintext) signature = t2b("\0" * self.output_size) ret = _lib.wc_RsaSSL_Sign(plaintext, len(plaintext), signature, len(signature), self.native_object, self._random.native_object) if ret != self.output_size: raise WolfCryptError("Signature error (%d)" % ret) return signature
def update(self, string): """ Hashes **string** into the current state of the hashing object. update() can be called any number of times during a hashing object's lifetime. """ string = t2b(string) ret = self._update(string) if ret < 0: raise WolfCryptError("Hash update error (%d)" % ret)
class TestAes(unittest.TestCase): key = "0123456789abcdef" IV = "1234567890abcdef" plain = t2b("now is the time ") cipher = h2b("959492575f4281532ccc9d4677a233cb") def setUp(self): self.aes = Aes.new(self.key, MODE_CBC, self.IV) def test_raises(self): # invalid key length self.assertRaises(ValueError, Aes.new, "key", MODE_CBC, self.IV) # invalid mode self.assertRaises(ValueError, Aes.new, self.key, MODE_ECB, self.IV) # invalid iv length self.assertRaises(ValueError, Aes.new, self.key, MODE_CBC, "IV") # invalid data length self.assertRaises(ValueError, self.aes.encrypt, "foo") self.assertRaises(ValueError, self.aes.decrypt, "bar") def test_single_encryption(self): assert self.aes.encrypt(self.plain) == self.cipher def test_multi_encryption(self): result = t2b("") segments = tuple(self.plain[i:i + self.aes.block_size] \ for i in range(0, len(self.plain), self.aes.block_size)) for segment in segments: result += self.aes.encrypt(segment) assert result == self.cipher def test_single_decryption(self): assert self.aes.decrypt(self.cipher) == self.plain def test_multi_decryption(self): result = t2b("") segments = tuple(self.cipher[i:i + self.aes.block_size] \ for i in range(0, len(self.cipher), self.aes.block_size)) for segment in segments: result += self.aes.decrypt(segment) assert result == self.plain
def sign(self, plaintext): """ Signs **plaintext**, using the private key data in the object. The plaintext's length must not be greater than: **self.output_size - self.RSA_MIN_PAD_SIZE** Returns a string containing the signature. """ plaintext = t2b(plaintext) signature = t2b("\0" * self.output_size) ret = _lib.wc_RsaSSL_Sign( plaintext, len(plaintext), signature, len(signature), self.native_object, self._random.native_object ) if ret != self.output_size: raise WolfCryptError("Signature error (%d)" % ret) return signature
def test_encrypt_short_tag(): key = "fedcba9876543210" iv = "0123456789abcdef" gcm = AesGcmStream(key, iv, 12) buf = gcm.encrypt("hello world") authTag = gcm.final() assert b2h(authTag) == bytes('ac8fcee96dc6ef8e5236da19', 'utf-8') assert b2h(buf) == bytes('5ba7d42e1bf01d7998e932', "utf-8") gcmdec = AesGcmStream(key, iv) bufdec = gcmdec.decrypt(buf) gcmdec.final(authTag) assert bufdec == t2b("hello world")
def __init__(self, key="", size=32): self._native_object = _ffi.new(self._native_type) self._enc = None self._dec = None self._key = None if len(key) > 0: if not size in self._key_sizes: raise ValueError("Invalid key size %d" % size) self._key = t2b(key) self.key_size = size self._IV_nonce = [] self._IV_counter = 0
def encrypt(self, plaintext): """ Encrypts **plaintext**, using the public key data in the object. The plaintext's length must not be greater than: **self.output_size - self.RSA_MIN_PAD_SIZE** Returns a string containing the ciphertext. """ plaintext = t2b(plaintext) ciphertext = t2b("\0" * self.output_size) ret = _lib.wc_RsaPublicEncrypt( plaintext, len(plaintext), ciphertext, len(ciphertext), self.native_object, self._random.native_object ) if ret != self.output_size: raise WolfCryptError("Encryption error (%d)" % ret) return ciphertext
def encrypt(self, plaintext): """ Encrypts **plaintext**, using the public key data in the object. The plaintext's length must not be greater than: **self.output_size - self.RSA_MIN_PAD_SIZE** Returns a string containing the ciphertext. """ plaintext = t2b(plaintext) ciphertext = t2b("\0" * self.output_size) ret = _lib.wc_RsaPublicEncrypt(plaintext, len(plaintext), ciphertext, len(ciphertext), self.native_object, self._random.native_object) if ret != self.output_size: raise WolfCryptError("Encryption error (%d)" % ret) return ciphertext
def test_multipart(): key = "fedcba9876543210" iv = "0123456789abcdef" gcm = AesGcmStream(key, iv) buf = gcm.encrypt("hello") buf += gcm.encrypt(" world") authTag = gcm.final() assert b2h(authTag) == bytes('ac8fcee96dc6ef8e5236da19b6197d2e', 'utf-8') assert b2h(buf) == bytes('5ba7d42e1bf01d7998e932', "utf-8") gcmdec = AesGcmStream(key, iv) bufdec = gcmdec.decrypt(buf[:5]) bufdec += gcmdec.decrypt(buf[5:]) gcmdec.final(authTag) assert bufdec == t2b("hello world")
def test_rsa_encrypt_decrypt(rsa_private, rsa_public): plaintext = t2b("Everyone gets Friday off.") # normal usage, encrypt with public, decrypt with pirate ciphertext = rsa_public.encrypt(plaintext) assert 1024 / 8 == len(ciphertext) == rsa_public.output_size assert plaintext == rsa_private.decrypt(ciphertext) # private object holds both private and public info, so it can also encrypt # using the known public key. ciphertext = rsa_private.encrypt(plaintext) assert 1024 / 8 == len(ciphertext) == rsa_private.output_size assert plaintext == rsa_private.decrypt(ciphertext)
def test_rsa_sign_verify(rsa_private, rsa_public): plaintext = t2b("Everyone gets Friday off.") # normal usage, sign with private, verify with public signature = rsa_private.sign(plaintext) assert 1024 / 8 == len(signature) == rsa_private.output_size assert plaintext == rsa_public.verify(signature) # private object holds both private and public info, so it can also verify # using the known public key. signature = rsa_private.sign(plaintext) assert 1024 / 8 == len(signature) == rsa_private.output_size assert plaintext == rsa_private.verify(signature)
def __init__(self, key): key = t2b(key) _Rsa.__init__(self) idx = _ffi.new("word32*") idx[0] = 0 ret = _lib.wc_RsaPrivateKeyDecode(key, idx, self.native_object,len(key)) if ret < 0: raise WolfCryptError("Invalid key error (%d)" % ret) self.output_size = _lib.wc_RsaEncryptSize(self.native_object) if self.output_size <= 0: raise WolfCryptError("Invalid key error (%d)" % self.output_size)
def test_rsa_pkcs8_encrypt_decrypt(rsa_private_pkcs8, rsa_public): plaintext = t2b("Everyone gets Friday off.") # normal usage, encrypt with public, decrypt with private ciphertext = rsa_public.encrypt(plaintext) assert 1024 / 8 == len(ciphertext) == rsa_public.output_size assert plaintext == rsa_private_pkcs8.decrypt(ciphertext) # private object holds both private and public info, so it can also encrypt # using the known public key. ciphertext = rsa_private_pkcs8.encrypt(plaintext) assert 1024 / 8 == len(ciphertext) == rsa_private_pkcs8.output_size assert plaintext == rsa_private_pkcs8.decrypt(ciphertext)
def test_rsa_pss_sign_verify(rsa_private_pss, rsa_public_pss): plaintext = t2b("Everyone gets Friday off yippee.") # normal usage, sign with private, verify with public signature = rsa_private_pss.sign_pss(plaintext) assert 1024 / 8 == len(signature) == rsa_private_pss.output_size assert 0 == rsa_public_pss.verify_pss(plaintext, signature) # private object holds both private and public info, so it can also verify # using the known public key. signature = rsa_private_pss.sign_pss(plaintext) assert 1024 / 8 == len(signature) == rsa_private_pss.output_size assert 0 == rsa_private_pss.verify_pss(plaintext, signature)
def test_rsa_pkcs8_sign_verify(rsa_private_pkcs8, rsa_public): plaintext = t2b("Everyone gets Friday off.") # normal usage, sign with private, verify with public signature = rsa_private_pkcs8.sign(plaintext) assert 1024 / 8 == len(signature) == rsa_private_pkcs8.output_size assert plaintext == rsa_public.verify(signature) # private object holds both private and public info, so it can also verify # using the known public key. signature = rsa_private_pkcs8.sign(plaintext) assert 1024 / 8 == len(signature) == rsa_private_pkcs8.output_size assert plaintext == rsa_private_pkcs8.verify(signature)
class TestDes3(unittest.TestCase): key = h2b("0123456789abcdeffedeba987654321089abcdef01234567") IV = h2b("1234567890abcdef") plain = t2b("Now is the time for all ") cipher = h2b("43a0297ed184f80e8964843212d508981894157487127db0") def setUp(self): self.des3 = Des3.new(self.key, MODE_CBC, self.IV) def test_raises(self): # invalid key length self.assertRaises(ValueError, Des3.new, "key", MODE_CBC, self.IV) # invalid mode self.assertRaises(ValueError, Des3.new, self.key, MODE_ECB, self.IV) # invalid iv length self.assertRaises(ValueError, Des3.new, self.key, MODE_CBC, "IV") # invalid data length self.assertRaises(ValueError, self.des3.encrypt, "foo") self.assertRaises(ValueError, self.des3.decrypt, "bar") def test_single_encryption(self): assert self.des3.encrypt(self.plain) == self.cipher def test_multi_encryption(self): result = t2b("") segments = tuple(self.plain[i:i + Des3.block_size] \ for i in range(0, len(self.plain), Des3.block_size)) for segment in segments: result += self.des3.encrypt(segment) assert result == self.cipher def test_single_decryption(self): assert self.des3.decrypt(self.cipher) == self.plain def test_multi_decryption(self): result = t2b("") segments = tuple(self.cipher[i:i + Des3.block_size] \ for i in range(0, len(self.cipher), Des3.block_size)) for segment in segments: result += self.des3.decrypt(segment) assert result == self.plain
def __init__(self, key): # pylint: disable=super-init-not-called key = t2b(key) _Rsa.__init__(self) # pylint: disable=non-parent-init-called idx = _ffi.new("word32*") idx[0] = 0 ret = _lib.wc_RsaPrivateKeyDecode(key, idx, self.native_object, len(key)) if ret < 0: raise WolfCryptError("Invalid key error (%d)" % ret) self.output_size = _lib.wc_RsaEncryptSize(self.native_object) if self.output_size <= 0: # pragma: no cover raise WolfCryptError("Invalid key error (%d)" % self.output_size)
def verify(self, signature, data): """ Verifies **signature**, using the public key data in the object. Returns **True** in case of a valid signature, otherwise **False**. """ data = t2b(data) status = _ffi.new("int[1]") ret = _lib.wc_ed25519_verify_msg(signature, len(signature), data, len(data), status, self.native_object) if ret < 0: raise WolfCryptError("Verify error (%d)" % ret) return status[0] == 1
def decode_key(self, key): """ Decodes an ECC private key from an ASN sequence. """ key = t2b(key) idx = _ffi.new("word32*") idx[0] = 0 ret = _lib.wc_EccPrivateKeyDecode(key, idx, self.native_object, len(key)) if ret < 0: raise WolfCryptError("Key decode error (%d)" % ret) if self.size <= 0: # pragma: no cover raise WolfCryptError("Key decode error (%d)" % self.size) if self.max_signature_size <= 0: # pragma: no cover raise WolfCryptError( "Key decode error (%d)" % self.max_signature_size)
def decode_key(self, key): """ Decodes an ED25519 public key """ key = t2b(key) if (len(key) < _lib.wc_ed25519_pub_size(self.native_object)): raise WolfCryptError("Key decode error: key too short") idx = _ffi.new("word32*") idx[0] = 0 ret = _lib.wc_ed25519_import_public(key, len(key), self.native_object) if ret < 0: raise WolfCryptError("Key decode error (%d)" % ret) if self.size <= 0: # pragma: no cover raise WolfCryptError("Key decode error (%d)" % self.size) if self.max_signature_size <= 0: # pragma: no cover raise WolfCryptError( "Key decode error (%d)" % self.max_signature_size)
def digest(self): """ Returns the hash value of this hashing object as a string containing 8-bit data. The object is not altered in any way by this function; you can continue updating the object after calling this function. """ result = t2b("\0" * self.digest_size) if self._native_object: obj = _ffi.new(self._native_type) _ffi.memmove(obj, self._native_object, self._native_size) ret = self._final(obj, result) if ret < 0: raise WolfCryptError("Hash finalize error (%d)" % ret) return result
def vectors(): TestVector = namedtuple("TestVector", "digest") TestVector.__new__.__defaults__ = (None,) * len(TestVector._fields) return { Sha: TestVector( digest=t2b("1b6182d68ae91ce0853bd9c6b6edfedd4b6a510d") ), Sha256: TestVector( digest=t2b("96e02e7b1cbcd6f104fe1fdb4652027a" + "5505b68652b70095c6318f9dce0d1844") ), Sha384: TestVector( digest=t2b("4c79d80531203a16f91bee325f18c6aada47f9382fe44fc1" + "1f92917837e9b7902f5dccb7d3656f667a1dce3460bc884b") ), Sha512: TestVector( digest=t2b("88fcf67ffd8558d713f9cedcd852db47" + "9e6573f0bd9955610a993f609637553c" + "e8fff55e644ee8a106aae19c07f91b3f" + "2a2a6d40dfa7302c0fa6a1a9a5bfa03f") ), HmacSha: TestVector( digest=t2b("5dfabcfb3a25540824867cd21f065f52f73491e0") ), HmacSha256: TestVector( digest=t2b("4b641d721493d80f019d9447830ebfee" + "89234a7d594378b89f8bb73873576bf6") ), HmacSha384: TestVector( digest=t2b("e72c72070c9c5c78e3286593068a510c1740cdf9dc34b512" + "ccec97320295db1fe673216b46fe72e81f399a9ec04780ab") ), HmacSha512: TestVector( digest=t2b("c7f48db79314fc2b5be9a93fd58601a1" + "bf42f397ec7f66dba034d44503890e6b" + "5708242dcd71a248a78162d815c685f6" + "038a4ac8cb34b8bf18986dbd300c9b41") ), }
def sign(self, plaintext): """ Signs **plaintext**, using the private key data in the object. Returns the signature. """ plaintext = t2b(plaintext) signature = _ffi.new("byte[%d]" % self.max_signature_size) signature_size = _ffi.new("word32[1]") signature_size[0] = self.max_signature_size ret = _lib.wc_ed25519_sign_msg(plaintext, len(plaintext), signature, signature_size, self.native_object) if ret != 0: # pragma: no cover raise WolfCryptError("Signature error (%d)" % ret) return _ffi.buffer(signature, signature_size[0])[:]
def verify(self, signature): """ Verifies **signature**, using the public key data in the object. The signature's length must be equal to: **self.output_size** Returns a string containing the plaintext. """ signature = t2b(signature) plaintext = _ffi.new("byte[%d]" % self.output_size) ret = _lib.wc_RsaSSL_Verify(signature, len(signature), plaintext, self.output_size, self.native_object) if ret < 0: # pragma: no cover raise WolfCryptError("Verify error (%d)" % ret) return _ffi.buffer(plaintext, ret)[:]
def decrypt(self, ciphertext): """ Decrypts **ciphertext**, using the private key data in the object. The ciphertext's length must be equal to: **self.output_size** Returns a string containing the plaintext. """ ciphertext = t2b(ciphertext) plaintext = _ffi.new("byte[%d]" % self.output_size) ret = _lib.wc_RsaPrivateDecrypt(ciphertext, len(ciphertext), plaintext, self.output_size, self.native_object) if ret < 0: # pragma: no cover raise WolfCryptError("Decryption error (%d)" % ret) return _ffi.buffer(plaintext, ret)[:]
def sign_raw(self, plaintext, rng=Random()): """ Signs **plaintext**, using the private key data in the object. Returns the signature in its two raw components r, s """ plaintext = t2b(plaintext) R = _ffi.new("mp_int[1]"); S = _ffi.new("mp_int[1]"); R_bin = _ffi.new("unsigned char[%d]" % self.size ) S_bin = _ffi.new("unsigned char[%d]" % self.size ) ret = _lib.mp_init(R) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) ret = _lib.mp_init(S) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) ret = _lib.wc_ecc_sign_hash_ex(plaintext, len(plaintext), rng.native_object, self.native_object, R, S) if ret != 0: # pragma: no cover raise WolfCryptError("Signature error (%d)" % ret) ret = _lib.mp_to_unsigned_bin(R, R_bin) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) ret = _lib.mp_to_unsigned_bin(S, S_bin) if ret != 0: # pragma: no cover raise WolfCryptError("wolfCrypt error (%d)" % ret) return _ffi.buffer(R_bin, self.size)[:], _ffi.buffer(S_bin, self.size)[:]
def vectors(): TestVector = namedtuple("TestVector", "key iv plaintext ciphertext raw_key") TestVector.__new__.__defaults__ = (None,) * len(TestVector._fields) return { Aes: TestVector( key="0123456789abcdef", iv="1234567890abcdef", plaintext=t2b("now is the time "), ciphertext=h2b("959492575f4281532ccc9d4677a233cb") ), Des3: TestVector( key=h2b("0123456789abcdeffedeba987654321089abcdef01234567"), iv=h2b("1234567890abcdef"), plaintext=t2b("Now is the time for all "), ciphertext=h2b("43a0297ed184f80e8964843212d508981894157487127db0") ), RsaPublic: TestVector( key=h2b( "30819F300D06092A864886F70D010101050003818D0030818902818100BC" "730EA849F374A2A9EF18A5DA559921F9C8ECB36D48E53535757737ECD161" "905F3ED9E4D5DF94CAC1A9D719DA86C9E84DC4613682FEABAD7E7725BB8D" "11A5BC623AA838CC39A20466B4F7F7F3AADA4D020EBB5E8D6948DC77C928" "0E22E96BA426BA4CE8C1FD4A6F2B1FEF8AAEF69062E5641EEB2B3C67C8DC" "2700F6916865A90203010001") ), RsaPrivate: TestVector( key=h2b( "3082025C02010002818100BC730EA849F374A2A9EF18A5DA559921F9C8EC" "B36D48E53535757737ECD161905F3ED9E4D5DF94CAC1A9D719DA86C9E84D" "C4613682FEABAD7E7725BB8D11A5BC623AA838CC39A20466B4F7F7F3AADA" "4D020EBB5E8D6948DC77C9280E22E96BA426BA4CE8C1FD4A6F2B1FEF8AAE" "F69062E5641EEB2B3C67C8DC2700F6916865A902030100010281801397EA" "E8387825A25C04CE0D407C31E5C470CD9B823B5809863B665FDC3190F14F" "D5DB15DDDED73B95933118310E5EA3D6A21A716E81481C4BCFDB8E7A8661" "32DCFB55C1166D279224458BF1B848B14B1DACDEDADD8E2FC291FBA5A96E" "F83A6AF1FD5018EF9FE7C3CA78EA56D3D3725B96DD4E064E3AC3D9BE72B6" "6507074C01024100FA47D47A7C923C55EF81F041302DA3CF8F1CE6872705" "700DDF9835D6F18B382F24B5D084B6794F7129945AF0646AACE772C6ED4D" "59983E673AF3742CF9611769024100C0C1820D0CEBC62FDC92F99D821A31" "E9E9F74BF282871CEE166AD11D188270F3C0B62FF6F3F71DF18623C84EEB" "8F568E8FF5BFF1F72BB5CC3DC657390C1B54410241009D7E05DEEDF4B7B2" "FBFC304B551DE32F0147966905CD0E2E2CBD8363B6AB7CB76DCA5B64A7CE" "BE86DF3B53DE61D21EEBA5F637EDACAB78D94CE755FBD71199C102401898" "1829E61E2739702168AC0A2FA172C121869538C65890A0579CBAE3A7B115" "C8DEF61BC2612376EFB09D1C44BE1343396717C89DCAFBF545648B38822C" "F28102403989E59C195530BAB7488C48140EF49F7E779743E1B419353123" "759C3B44AD691256EE0061641666D37C742B15B4A2FEBF086B1A5D3F9012" "B105863129DBD9E2") ), EccPublic: TestVector( key=h2b( "3059301306072A8648CE3D020106082A8648CE3D0301070342000455BFF4" "0F44509A3DCE9BB7F0C54DF5707BD4EC248E1980EC5A4CA22403622C9BDA" "EFA2351243847616C6569506CC01A9BDF6751A42F7BDA9B236225FC75D7F" "B4" ), raw_key=h2b( "55bff40f44509a3dce9bb7f0c54df5707bd4ec248e1980ec5a4ca22403622c9b" "daefa2351243847616c6569506cc01a9bdf6751a42f7bda9b236225fc75d7fb4" ) ), EccPrivate: TestVector( key=h2b( "30770201010420F8CF926BBD1E28F1A8ABA1234F3274188850AD7EC7EC92" "F88F974DAF568965C7A00A06082A8648CE3D030107A1440342000455BFF4" "0F44509A3DCE9BB7F0C54DF5707BD4EC248E1980EC5A4CA22403622C9BDA" "EFA2351243847616C6569506CC01A9BDF6751A42F7BDA9B236225FC75D7F" "B4" ), raw_key=h2b( "55bff40f44509a3dce9bb7f0c54df5707bd4ec248e1980ec5a4ca22403622c9b" "daefa2351243847616c6569506cc01a9bdf6751a42f7bda9b236225fc75d7fb4" "f8cf926bbd1e28f1a8aba1234f3274188850ad7ec7ec92f88f974daf568965c7" ) ), Ed25519Private: TestVector( key = h2b( "47CD22B276161AA18BA1E0D13DBE84FE4840E4395D784F555A92E8CF739B" "F86B" ) ), Ed25519Public: TestVector( key=h2b( "8498C65F4841145F9C51E8BFF4504B5527E0D5753964B7CB3C707A2B9747" "FC96" ) ) }