def __init__(self, hidden_neurons=100, activation_func='tanh', *args, **kwargs): super(SLmNce, self).__init__(*args, **kwargs) self.name = 'slm' self.activation_func = activation_func self.hidden_neurons = hidden_neurons self.updatable_parameters.extend(['W1', 'W2']) rand_values = random_value_GloBen10( (self.context_size * self.emb_size + 1, self.hidden_neurons), floatX, np.random.RandomState(7816)) self.W1 = theano.shared(value=rand_values, name='W') rand_values = random_value_GloBen10( (self.hidden_neurons + 1, self.emb_size), floatX, np.random.RandomState(7817)) self.W2 = theano.shared(value=rand_values, name='W')
def __init__(self, *args, **kwargs): super(VLblNce, self).__init__(*args, **kwargs) self.regularize.append('C') rand_values = random_value_GloBen10((self.context_size, self.emb_size), floatX, np.random.RandomState(2341), (self.context_size * self.emb_size, self.emb_size)) self.C = theano.shared(value=rand_values, name='C')
def __init__(self, *args, **kwargs): super(LblNce, self).__init__(*args, **kwargs) self.name = 'lbl' self.updatable_parameters.append('W') self.regularize.append('W') rand_values = random_value_GloBen10( (self.context_size * self.emb_size, self.emb_size), floatX, np.random.RandomState(7816)) self.W = theano.shared(value=rand_values, name='W')
def __init__(self, *args, **kwargs): super(VLblNce, self).__init__(*args, **kwargs) self.regularize.append('C') rand_values = random_value_GloBen10( (self.context_size, self.emb_size), floatX, np.random.RandomState(2341), (self.context_size * self.emb_size, self.emb_size)) self.C = theano.shared(value=rand_values, name='C')
def __init__(self, name='HiddenLayer', shape=(0, 0), w_values=None, activation=T.tanh): super(HiddenLayer, self).__init__(name) self.activation = activation if w_values is None: input_dim, output_dim, = shape w_values = random_value_GloBen10((input_dim, output_dim), floatX) if activation == theano.tensor.nnet.sigmoid: w_values *= 4 self.fan_in = w_values.shape[0] self.clipping = False self.threshold = 1e12 self.weights = theano.shared(value=w_values, name='weights_' + self.name)