strs = 'lookuptable_5folds_'+str(i)+'.json' jsonfiles.append(os.path.join(temp_path,strs)) #print(jsonfiles) temp_path = os.path.join(os.getcwd(),'files_h5') h5folders = [] for i in (5,10,15): strs = 'subjects_'+str(i) h5folders.append(os.path.join(temp_path,strs)) # print(h5folders) file_trans_input = os.path.join(os.getcwd(),'dataset','scattered','standard1' ) file_trans_output = os.path.join(os.getcwd(),'dataset','difsizesSVM') valpath = os.path.join(file_trans_output, 'val') testpath = os.path.join(file_trans_output, 'test') report1 = [valpath, 'validation'] report2 = [testpath, 'test'] sys.stdout = logger(filename=os.path.join(os.getcwd(),'log&&materials','Supploopsvm_multipledesignevalutionresults.log')) # This loop is for different sizess of datasets topCon = {'SVM':[]} wholest = time.time() for jsonfile, h5folder, flag in zip(jsonfiles,h5folders,(5,10,15,20)): datalooper = trainvalFormation(file_trans_input, None, 5, 'specified') # jsonfile = os.path.join(os.getcwd(),'files_json', 'lookuptable_5folds_10.json') datalooper.specifybyloading(path=jsonfile) dur = time.time() datalooper.subjects_transfer(file_trans_output) features, targets = skstyleDataset(file_trans_output,flag) print('dataset formation time: {}s.'.format(round(time.time() - dur, 2))) print() print() print() print('#'*80)
file_trans_input = os.path.join(os.getcwd(), 'dataset', 'scattered', 'standard1') file_trans_output = os.path.join(os.getcwd(), 'dataset', 'constructed2') looper = trainvalFormation(file_trans_input, file_trans_output, 5, 'specified') looper.specifybyloading() basedatapath = '/home/zhaok14/example/PycharmProjects/setsail/5foldCNNdesign/dataset/constructed2' valdatapath = os.path.join(os.getcwd(), 'dataset', 'constructed2', 'val') testdatapath = os.path.join(os.getcwd(), 'dataset', 'constructed2', 'test') report1 = [valdatapath, 'validation'] report2 = [testdatapath, 'test'] ev = time.time() # 1. initialize the dataset sys.stdout = logger(filename=os.path.join(os.getcwd(), 'log&&materials', 'spec_lstmresults.log')) # 2. for every single rounds of evaluation, we need to train the models. print('Note this time lstm is with the upgraded spec feature....') for i in (0, 1, 2, 3, 4): strg = 'NEWCHECKING:ROUND_{}'.format(str(i)) print() print(40 * '-' + strg + 40 * '-') print() # 2.1 generate different data dur = time.time() looper.loop_files_transfer(i) dur = round(time.time() - dur, 2) print('file transformation finished. time:{}s'.format(dur)) # 2.2 build individual networks nn = comparativeNetwork() nn.CreateLstmModel()
#print(jsonfiles) temp_path = os.path.join(os.getcwd(), 'files_h5') h5folders = [] for i in (5, 10, 15, 20): strs = 'subjects_' + str(i) h5folders.append(os.path.join(temp_path, strs)) # print(h5folders) file_trans_input = os.path.join(os.getcwd(), 'dataset', 'scattered', 'standard1') file_trans_output = os.path.join(os.getcwd(), 'dataset', 'difsizes') valpath = os.path.join(file_trans_output, 'val') testpath = os.path.join(file_trans_output, 'test') report1 = [valpath, 'validation'] report2 = [testpath, 'test'] sys.stdout = logger( filename=os.path.join(os.getcwd(), 'log&&materials', 'Bigloop_20subjectsdesignevalutionresults.log')) # This loop is for different sizess of datasets topCon = {'CNN': [], 'LSTM': [], 'FC': []} wholest = time.time() for jsonfile, h5folder, flag in zip(jsonfiles, h5folders, (5, 10, 15, 20)): if flag != 20: print('We just skip the {}-scale dataset..'.format(str(flag))) continue datalooper = trainvalFormation(file_trans_input, file_trans_output, 5, 'specified') datalooper.specifybyloading(path=jsonfile) print() print() print() print('#' * 80)
#define the file transfer object file_trans_input = os.path.join(os.getcwd(), 'dataset', 'scattered', 'standard1') file_trans_output = os.path.join(os.getcwd(), 'dataset', 'constructed') looper = trainvalFormation(file_trans_input, file_trans_output, 5, 'specified') looper.specifybyloading() basedatapath = '/home/zhaok14/example/PycharmProjects/setsail/5foldCNNdesign/dataset/constructed' valdatapath = os.path.join(os.getcwd(),'dataset','constructed','val') testdatapath = os.path.join(os.getcwd(),'dataset','constructed','test') report1 = [valdatapath,'validation'] report2 = [testdatapath, 'test'] ev = time.time() # 1. initialize the dataset sys.stdout = logger(filename=os.path.join(os.getcwd(),'log&&materials','Newfeature_multipleensemble_evaluationresults.log')) print('This time the corrected features are applied....') for i in (0, 1, 2, 3, 4): print() print(40 * '-' + 'NEWCHECKING:ROUND_{}'.format(str(i)) + 40 * '-') print() looper.loop_files_transfer(i) nn = flexible_average() # 2. create individual and ensemble model regudir = os.path.join(os.getcwd(),'CNNevaluation','regular','regi='+ str(i)) residir = os.path.join(os.getcwd(), 'CNNevaluation', 'residual','resi='+ str(i)) incedir = os.path.join(os.getcwd(),'CNNevaluation','inception','inci='+ str(i)) nn.ensembleForward(regudir=regudir, residir=residir, incedir=incedir) regAresModel, regAresName = nn.average(regudir=True,residir=True) regAincModel, regAincName = nn.average(regudir=True,incedir=True) resAincModel, resAincName = nn.average(residir=True,incedir=True)
jsonfiles.append(os.path.join(temp_path, strs)) # print(jsonfiles) temp_path = os.path.join(os.getcwd(), 'files_h5') h5folders = [] for i in (5, 10, 15, 20): strs = 'subjects_' + str(i) h5folders.append(os.path.join(temp_path, strs)) # print(h5folders) file_trans_input = os.path.join(os.getcwd(), 'dataset', 'scattered', 'standard_aligned') file_trans_output = os.path.join(os.getcwd(), 'dataset', 'difsizes') valpath = os.path.join(file_trans_output, 'val') testpath = os.path.join(file_trans_output, 'test') report1 = [valpath, 'validation'] report2 = [testpath, 'test'] sys.stdout = logger(filename=os.path.join( os.getcwd(), 'log&&materials', 'std150_designevalutionresults.log')) # This loop is for different sizess of datasets topCon = {'CNN': [], 'LSTM': [], 'FC': []} wholest = time.time() for jsonfile, h5folder, flag in zip(jsonfiles, h5folders, (5, 10, 15, 20)): if flag != 20: print('We just skip the {}-scale dataset..'.format(str(flag))) continue datalooper = trainvalFormation(file_trans_input, file_trans_output, 5, 'specified') datalooper.specifybyloading(path=jsonfile) print() print() print() print('#' * 80) print('The followed data formation jsonfile:{}'.format(