コード例 #1
0
ファイル: linear.py プロジェクト: clrichar/worms
def _grow_linear_start(bb_base, verts_pickleable, edges_pickleable, **kwargs):
    verts = tuple([_Vertex(*vp) for vp in verts_pickleable])
    edges = tuple([_Edge(*ep) for ep in edges_pickleable])
    pos = np.empty(shape=(1024, len(verts), 4, 4), dtype=np.float32)
    idx = np.empty(shape=(1024, len(verts)), dtype=np.int32)
    err = np.empty(shape=(1024, ), dtype=np.float32)
    stats = zero_search_stats()
    result = ResultJIT(pos=pos, idx=idx, err=err, stats=stats)
    bases = np.zeros(len(verts), dtype=np.int64)
    nresults, result = _grow_linear_recurse(result=result,
                                            bb_base=bb_base,
                                            verts=verts,
                                            edges=edges,
                                            bases=bases,
                                            **kwargs)
    result = ResultJIT(result.pos[:nresults], result.idx[:nresults],
                       result.err[:nresults], result.stats)
    return result
コード例 #2
0
ファイル: linear.py プロジェクト: clrichar/worms
def grow_linear(ssdag,
                loss_function=null_lossfunc,
                loss_threshold=2.0,
                last_bb_same_as=-1,
                parallel=0,
                monte_carlo=0,
                verbosity=0,
                merge_bblock=None,
                lbl='',
                pbar=False,
                pbar_interval=10.0,
                no_duplicate_bases=True,
                max_linear=1000000,
                **kw):
    verts = ssdag.verts
    edges = ssdag.edges
    if last_bb_same_as is None: last_bb_same_as = -1
    assert len(verts) > 1
    assert len(verts) == len(edges) + 1
    assert verts[0].dirn[0] == 2
    assert verts[-1].dirn[1] == 2
    for ivertex in range(len(verts) - 1):
        assert verts[ivertex].dirn[1] + verts[ivertex + 1].dirn[0] == 1

    # if isinstance(loss_function, types.FunctionType):
    #     if not 'NUMBA_DISABLE_JIT' in os.environ:
    #         loss_function = nb.njit(nogil=1, fastmath=1)

    exe = cf.ThreadPoolExecutor(
        max_workers=parallel) if parallel else InProcessExecutor()
    # exe = cf.ProcessPoolExecutor(max_workers=parallel) if parallel else InProcessExecutor()
    with exe as pool:
        bb_base = tuple([
            np.array([b.basehash if no_duplicate_bases else 0 for b in bb],
                     dtype=np.int64) for bb in ssdag.bbs
        ])
        verts_pickleable = [v._state for v in verts]
        edges_pickleable = [e._state for e in edges]
        kwargs = dict(
            bb_base=bb_base,
            verts_pickleable=verts_pickleable,
            edges_pickleable=edges_pickleable,
            loss_function=loss_function,
            loss_threshold=loss_threshold,
            last_bb_same_as=last_bb_same_as,
            nresults=0,
            isplice=0,
            splice_position=np.eye(4, dtype=vertex_xform_dtype),
            max_linear=max_linear,
        )
        futures = list()
        if monte_carlo:
            kwargs['fn'] = _grow_linear_mc_start
            kwargs['seconds'] = monte_carlo
            kwargs['ivertex_range'] = (0, verts[0].len)
            kwargs['merge_bblock'] = merge_bblock
            kwargs['lbl'] = lbl
            kwargs['verbosity'] = verbosity
            kwargs['pbar'] = pbar
            kwargs['pbar_interval'] = pbar_interval
            njob = cpu_count() if parallel else 1
            for ivert in range(njob):
                kwargs['threadno'] = ivert
                futures.append(pool.submit(**kwargs))
        else:
            kwargs['fn'] = _grow_linear_start
            nbatch = max(1, int(verts[0].len / 64 / cpu_count()))
            for ivert in range(0, verts[0].len, nbatch):
                ivert_end = min(verts[0].len, ivert + nbatch)
                kwargs['ivertex_range'] = ivert, ivert_end
                futures.append(pool.submit(**kwargs))
        results = list()
        if monte_carlo:
            for f in cf.as_completed(futures):
                results.append(f.result())
        else:
            desc = 'linear search ' + str(lbl)
            if merge_bblock is None: merge_bblock = 0
            fiter = cf.as_completed(futures)
            if pbar:
                fiter = tqdm(fiter,
                             desc=desc,
                             position=merge_bblock + 1,
                             mininterval=pbar_interval,
                             total=len(futures))
            for f in fiter:
                results.append(f.result())
    tot_stats = zero_search_stats()
    for i in range(len(tot_stats)):
        tot_stats[i][0] += sum([r.stats[i][0] for r in results])
    result = ResultJIT(pos=np.concatenate([r.pos for r in results]),
                       idx=np.concatenate([r.idx for r in results]),
                       err=np.concatenate([r.err for r in results]),
                       stats=tot_stats)
    result = remove_duplicate_results(result)
    order = np.argsort(result.err)
    return ResultJIT(pos=result.pos[order],
                     idx=result.idx[order],
                     err=result.err[order],
                     stats=result.stats)
コード例 #3
0
ファイル: linear.py プロジェクト: clrichar/worms
def _grow_linear_mc_start(seconds, verts_pickleable, edges_pickleable,
                          threadno, pbar, lbl, verbosity, merge_bblock,
                          pbar_interval, **kwargs):
    tstart = time()
    verts = tuple([_Vertex(*vp) for vp in verts_pickleable])
    edges = tuple([_Edge(*ep) for ep in edges_pickleable])
    pos = np.empty(shape=(1024, len(verts), 4, 4), dtype=np.float32)
    idx = np.empty(shape=(1024, len(verts)), dtype=np.int32)
    err = np.empty(shape=(1024, ), dtype=np.float32)
    stats = zero_search_stats()
    result = ResultJIT(pos=pos, idx=idx, err=err, stats=stats)
    bases = np.zeros(len(verts), dtype=np.int64)
    del kwargs['nresults']

    if threadno == 0 and pbar:
        desc = 'linear search ' + str(lbl)
        if merge_bblock is None: merge_bblock = 0
        pbar_inst = tqdm(desc=desc,
                         position=merge_bblock + 1,
                         total=seconds,
                         mininterval=pbar_interval)
        last = tstart

    nbatch = [1000, 330, 100, 33, 10, 3] + [1] * 99
    nbatch = nbatch[len(edges)] * 10
    nresults = 0
    iter = 0
    ndups = 0
    while time() < tstart + seconds:
        if 'pbar_inst' in vars():
            pbar_inst.update(time() - last)
            last = time()
        nresults, result = _grow_linear_mc(nbatch,
                                           result,
                                           verts,
                                           edges,
                                           bases=bases,
                                           nresults=nresults,
                                           **kwargs)

        iter += 1
        # remove duplicates every 10th iter
        if iter % 10 == 0:
            nresults_with_dups = nresults
            uniq_result = ResultJIT(idx=result.idx[:nresults],
                                    pos=result.pos[:nresults],
                                    err=result.err[:nresults],
                                    stats=result.stats)
            uniq_result = remove_duplicate_results(uniq_result)
            nresults = len(uniq_result.err)
            result.idx[:nresults] = uniq_result.idx
            result.pos[:nresults] = uniq_result.pos
            result.err[:nresults] = uniq_result.err
            ndups += nresults_with_dups - nresults
            # print(ndups / nresults)

        if nresults >= kwargs['max_linear']: break

    if 'pbar_inst' in vars(): pbar_inst.close()

    result = ResultJIT(result.pos[:nresults], result.idx[:nresults],
                       result.err[:nresults], result.stats)
    return result