コード例 #1
0
    # multiprocessing.set_start_method('spawn')
    # pool = multiprocessing.Pool(processes=4)
    # pool.map(patch_extractor.extract_parallel, all_fixed_float_offset)

    #  # Save into tfRecords
    from wsitools.file_management.wsi_case_manager import WSI_CaseManager  # # import dependent packages
    from wsitools.file_management.offset_csv_manager import OffsetCSVManager
    from wsitools.tissue_detection.tissue_detector import TissueDetector
    from wsitools.patch_extraction.feature_map_creator import FeatureMapCreator

    fixed_wsi = "/projects/shart/digital_pathology/data/PenMarking/WSIs/MELF/7bb50b5d9dcf4e53ad311d66136ae00f.tiff"
    float_wsi_root_dir = "/projects/shart/digital_pathology/data/PenMarking/WSIs/MELF-Clean"

    gnb_training_files = "/projects/shart/digital_pathology/data/PenMarking/model/tissue_loc/HE_tissue_others.tsv"
    tissue_detector = TissueDetector("GNB",
                                     threshold=0.5,
                                     training_files=gnb_training_files)

    offset_csv_fn = "/projects/shart/digital_pathology/data/PenMarking/WSIs/registration_offsets.csv"
    offset_csv_mn = OffsetCSVManager(offset_csv_fn)

    fm = FeatureMapCreator("./feature_maps/basic_fm_PP_eval.csv")

    case_mn = WSI_CaseManager()
    float_wsi = case_mn.get_counterpart_fn(fixed_wsi, float_wsi_root_dir)
    _, fixed_wsi_uuid, _ = case_mn.get_wsi_fn_info(fixed_wsi)
    _, float_wsi_uuid, _ = case_mn.get_wsi_fn_info(float_wsi)

    offset, state_indicator = offset_csv_mn.lookup_table(
        fixed_wsi_uuid, float_wsi_uuid)
    if state_indicator == 0:
コード例 #2
0
fixed_wsi_list = open(fixed_wsi_list_txt, 'r').readlines()
for fixed_wsi_t in fixed_wsi_list:
    fixed_wsi = os.path.join(fixed_wsi_root_dir, fixed_wsi_t + wsi_ext)
    case_mn = WSI_CaseManager(image_pairs_txt)
    float_wsi = case_mn.get_counterpart_fn(fixed_wsi, float_wsi_root_dir)
    _, fixed_wsi_uuid, _ = case_mn.get_wsi_fn_info(fixed_wsi)
    _, float_wsi_uuid, _ = case_mn.get_wsi_fn_info(float_wsi)

    offset_csv_mn = OffsetCSVManager(offset_csv_fn)
    offset, state_indicator = offset_csv_mn.lookup_table(
        fixed_wsi_uuid, float_wsi_uuid)
    if state_indicator == 0:
        raise Exception("No corresponding offset can be found in the file")

    xml_fn = os.path.join(annotation_root_path, fixed_wsi_uuid + '.xml')
    tissue_detector = TissueDetector("LAB_Threshold", threshold=80)
    parameters = PairwiseExtractorParameters(output_dir,
                                             save_format='.jpg',
                                             sample_cnt=-1)
    if os.path.exists(xml_fn):
        annotations = AnnotationRegions(xml_fn, class_label_id_csv)
        patch_extractor = PairwisePatchExtractor(tissue_detector,
                                                 parameters,
                                                 annotations=annotations)
        patch_cnt = patch_extractor.extract(fixed_wsi, float_wsi, offset)
    else:
        patch_extractor = PairwisePatchExtractor(tissue_detector, parameters)
        patch_cnt = patch_extractor.extract(fixed_wsi, float_wsi, offset)
    print("%d Patches have been save to %s" % (patch_cnt, output_dir))
コード例 #3
0
ファイル: extract_patches.py プロジェクト: m081429/wsitools
def main():
    """Console script for extracting patches from WSI files."""
    parser = argparse.ArgumentParser()

    parser.add_argument("-w",
                        "--wsi_fn",
                        required=True,
                        dest='wsi_fn',
                        help="WSI file name")

    parser.add_argument("-o",
                        "--out-dir",
                        default=os.getcwd(),
                        dest='out_dir',
                        help="Where patches should be saved")

    parser.add_argument("-s",
                        "--patch-size",
                        default=256,
                        dest='patch_size',
                        type=int,
                        help="H & W of patches")

    parser.add_argument(
        "-n",
        "--number-processors",
        default=8,
        dest='num_processors',
        type=int,
        help="Number of processors to use during patch extraction")

    parser.add_argument(
        "-c",
        "--number-patches",
        default=-1,
        dest='sample_cnt',
        type=int,
        help="Number of processors to use during patch extraction [-1 == all]")

    parser.add_argument(
        "-a",
        "--patch-filter-tissue-area",
        default=0.8,
        dest='patch_filter_by_area',
        type=float,
        help="Amount of tissue that should be present in a patch")

    parser.add_argument(
        "-R",
        "--rescale-rate",
        default=128,
        dest='rescale_rate',
        type=int,
        help="Fold size to scale the thumbnail to (for faster processing)")

    parser.add_argument("-f",
                        "--patch-format",
                        dest='save_format',
                        choices=['.png', '.jpg', '.tfrecord'],
                        default=".png",
                        help="Output format for patches")

    parser.add_argument("-x",
                        "--annotation-xml",
                        dest='anno_xml',
                        default=None,
                        help="XML definig the annotations")

    parser.add_argument("-y",
                        "--annotation-class_label_id_csv",
                        dest='anno_class_label_id_csv',
                        default=None,
                        help="XML class_label_id_csv")

    parser.add_argument("-l",
                        "--openslide-level",
                        dest='openslide_level',
                        default=0,
                        help="Level used to extract patches")

    parser.add_argument("-T",
                        "--tissue-detection-method",
                        dest="tissue_detector_method",
                        choices=['LAB_Threshold', 'GNB'],
                        default="LAB_Threshold",
                        help="Choose the method for finding tissue")

    parser.add_argument(
        "-t",
        "--tissue-detection-threshold",
        dest="tissue_detector_threshold",
        choices=range(1, 255),
        default=80,
        help=
        "Threshold at which there is tissue in patch (used for LAB_Threshold)")

    parser.add_argument("-G",
                        "--GNB-file",
                        dest="training_file",
                        default=None,
                        help="GNB training file (if GNB method is chosen)")

    parser.add_argument("-F",
                        "--feature-map",
                        dest="feature_map",
                        default=None,
                        help="Feature map file (used if output is TFRecords)")

    parser.add_argument("-W",
                        "--wsi_reg_2",
                        dest='wsi_reg_2',
                        help="second WSI registration file name")

    parser.add_argument("-Ox",
                        "--reg_off_set_x",
                        dest='reg_off_set_x',
                        type=float,
                        help="Registration X offset")

    parser.add_argument("-Oy",
                        "--reg_off_set_y",
                        dest='reg_off_set_y',
                        type=float,
                        help="Registration Y offset")

    parser.add_argument(
        "-V",
        "--verbose",
        dest="logLevel",
        choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'],
        default="INFO",
        help="Set the logging level")

    args = parser.parse_args()
    logging.basicConfig(stream=sys.stderr,
                        level=args.logLevel,
                        format='%(name)s (%(levelname)s): %(message)s')

    logger = logging.getLogger(__name__)
    logger.setLevel(args.logLevel)
    ''' If TFRecords, must have a feature map'''
    if args.save_format == '.tfrecord':
        assert args.feature_map is not None, "You must supply a feature map if you want TFRecords exported"
        assert os.path.exists(
            args.feature_map
        ), "Your feature map file ({}) was not found".format(args.feature_map)
    '''Required arguments for GNB-based tissue detection'''
    if args.tissue_detector_method == 'GNB':
        assert args.training_file is not None, "You must provide a GNB file if using GNB-based tissue detection"
        assert os.path.exists(
            args.training_file), "Your GNB file ({}) was not found".format(
                args.training_file)
    ''' If annotation is provided, change the default output for outputting annotation  If Annotation xml file is provided, must have a XML class_label_id_csv file'''
    with_anno = False
    annotations = None
    if args.anno_xml:
        with_anno = True
        assert os.path.exists(
            args.anno_xml), "Your XML file ({}) was not found".format(
                args.anno_xml)
        assert args.anno_class_label_id_csv is not None, "You must supply a input file"
        assert os.path.exists(args.anno_class_label_id_csv
                              ), "Your wsi file ({}) was not found".format(
                                  args.anno_class_label_id_csv)

        annotations = AnnotationRegions(args.anno_xml,
                                        args.anno_class_label_id_csv)
    '''Setting None if feature_map is not provided'''
    if args.feature_map is not None:
        fm = FeatureMapCreator(args.feature_map)
    else:
        fm = None
    '''Checking input param for image registration'''
    if args.wsi_reg_2:
        assert os.path.exists(args.wsi_reg_2)
    '''Choose a method for detecting tissue in thumbnail image'''
    tissue_detector = TissueDetector(
        args.tissue_detector_method,  # Can be LAB_Threshold or GNB
        threshold=args.
        tissue_detector_threshold,  # Number from 1-255, anything less than\
        # this number means there is tissue
        training_files=args.
        training_file  # Training file for GNB-based detection
    )
    '''Is offset values are provided then check values are float'''
    if args.reg_off_set_x or args.reg_off_set_y:
        assert str(args.reg_off_set_x).lstrip('-').replace('.', '',
                                                           1).isdigit()
        assert str(args.reg_off_set_y).lstrip('-').replace('.', '',
                                                           1).isdigit()
        offset = (float(args.reg_off_set_x), float(args.reg_off_set_x))
    else:
        '''Is offset values are not provided then offset values are calculated based on image registration'''
        if args.wsi_reg_2:
            matcher_parameters = MatcherParameters()
            matcher = WSI_Matcher(tissue_detector, matcher_parameters)
            offset = matcher.match(args.wsi_fn, args.wsi_reg_2)
    '''Calling appropriate methods if registration offsets are provided, so this block is called in patch_extraction with image regitration and in patch_extraction with image regitration & annotations'''
    if args.wsi_reg_2:

        parameters = PairwiseExtractorParameters(
            args.out_dir,  # Where the patches should be extracted to
            save_format=args.
            save_format,  # Can be '.jpg', '.png', or '.tfrecord'
            sample_cnt=args.
            sample_cnt,  # Limit the number of patches to extract
            # (-1 == all patches)
            patch_size=args.
            patch_size,  # Size of patches to extract (Height & Width)
            rescale_rate=args.rescale_rate,
            # Fold size to scale the thumbnail to (for faster \
            # processing)
            patch_filter_by_area=args.patch_filter_by_area,
            # Amount of tissue that should
            # be present in a patch
            with_anno=
            with_anno,  # If true, you need to supply an additional XML file
            extract_layer=args.openslide_level  # OpenSlide Level
        )
        patch_extractor = PairwisePatchExtractor(tissue_detector,
                                                 parameters,
                                                 feature_map=fm,
                                                 annotations=annotations)
        '''If num_processors is zero then multi processing is turned off'''
        if args.num_processors > 0:
            # Run the extraction process
            multiprocessing.set_start_method('spawn')
            pool = multiprocessing.Pool(processes=args.num_processors)
            pool.map(patch_extractor.extract,
                     [args.wsi_fn, args.wsi_reg_2, offset])
        else:
            patch_num = patch_extractor.extract(args.wsi_fn, args.wsi_reg_2,
                                                offset)
    else:
        '''this block is called in patch_extraction  and in patch_extraction with image annotations'''
        parameters = ExtractorParameters(
            args.out_dir,  # Where the patches should be extracted to
            save_format=args.
            save_format,  # Can be '.jpg', '.png', or '.tfrecord'
            sample_cnt=args.
            sample_cnt,  # Limit the number of patches to extract
            # (-1 == all patches)
            patch_size=args.
            patch_size,  # Size of patches to extract (Height & Width)
            rescale_rate=args.
            rescale_rate,  # Fold size to scale the thumbnail to (for faster \
            # processing)
            patch_filter_by_area=args.
            patch_filter_by_area,  # Amount of tissue that should
            # be present in a patch
            with_anno=
            with_anno,  # If true, you need to supply an additional XML file
            extract_layer=args.openslide_level  # OpenSlide Level
        )

        # Will be another step for Annotations here
        # Create the extractor object
        patch_extractor = PatchExtractor(
            tissue_detector,
            parameters,
            feature_map=fm,  # Need to update this when available
            annotations=annotations  # Need to update this when available
        )
        '''If num_processors is zero then multi processing is turned off'''
        if args.num_processors > 0:
            # Run the extraction process
            multiprocessing.set_start_method('spawn')
            pool = multiprocessing.Pool(processes=args.num_processors)
            pool.map(patch_extractor.extract, [args.wsi_fn])
        else:
            patch_num = patch_extractor.extract(args.wsi_fn)

    return 0