def bdib(ticker: str, dt, session='allday', typ='TRADE', **kwargs) -> pd.DataFrame: """ Bloomberg intraday bar data Args: ticker: ticker name dt: date to download session: [allday, day, am, pm, pre, post] typ: [TRADE, BID, ASK, BID_BEST, ASK_BEST, BEST_BID, BEST_ASK] **kwargs: ref: reference ticker or exchange used as supplement if exchange info is not defined for `ticker` batch: whether is batch process to download data log: level of logs Returns: pd.DataFrame """ from xbbg.core import trials logger = logs.get_logger(bdib, **kwargs) ex_info = const.exch_info(ticker=ticker, **kwargs) if ex_info.empty: raise KeyError(f'Cannot find exchange info for {ticker}') ss_rng = process.time_range(dt=dt, ticker=ticker, session=session, tz=ex_info.tz, **kwargs) data_file = storage.bar_file(ticker=ticker, dt=dt, typ=typ) if files.exists(data_file) and kwargs.get( 'cache', True) and (not kwargs.get('reload', False)): res = (pd.read_parquet(data_file).pipe( pipeline.add_ticker, ticker=ticker).loc[ss_rng[0]:ss_rng[1]]) if not res.empty: logger.debug(f'Loading Bloomberg intraday data from: {data_file}') return res if not process.check_current(dt=dt, logger=logger, **kwargs): return pd.DataFrame() cur_dt = pd.Timestamp(dt).strftime('%Y-%m-%d') q_tckr = ticker if ex_info.get('is_fut', False): is_sprd = ex_info.get( 'has_sprd', False) and (len(ticker[:-1]) != ex_info['tickers'][0]) if not is_sprd: q_tckr = fut_ticker(gen_ticker=ticker, dt=dt, freq=ex_info['freq']) if q_tckr == '': logger.error(f'cannot find futures ticker for {ticker} ...') return pd.DataFrame() info_log = f'{q_tckr} / {cur_dt} / {typ}' trial_kw = dict(ticker=ticker, dt=dt, typ=typ, func='bdib') num_trials = trials.num_trials(**trial_kw) if num_trials >= 2: if kwargs.get('batch', False): return pd.DataFrame() logger.info(f'{num_trials} trials with no data {info_log}') return pd.DataFrame() while conn.bbg_session(**kwargs).tryNextEvent(): pass time_rng = process.time_range(dt=dt, ticker=ticker, session='allday', **kwargs) request = process.create_request( service='//blp/refdata', request='IntradayBarRequest', settings=[ ('security', ticker), ('eventType', typ), ('interval', kwargs.get('interval', 1)), ('startDateTime', time_rng[0]), ('endDateTime', time_rng[1]), ], **kwargs, ) logger.debug(f'Sending request to Bloomberg ...\n{request}') conn.send_request(request=request, **kwargs) res = pd.DataFrame(process.rec_events(func=process.process_bar, **kwargs)) if res.empty or ('time' not in res): logger.warning(f'No data for {info_log} ...') trials.update_trials(cnt=num_trials + 1, **trial_kw) return pd.DataFrame() data = (res.set_index('time').rename_axis(index=None).rename( columns={ 'numEvents': 'num_trds' }).tz_localize('UTC').tz_convert(ex_info.tz).pipe(pipeline.add_ticker, ticker=ticker)) if kwargs.get('cache', True): storage.save_intraday(data=data[ticker], ticker=ticker, dt=dt, typ=typ, **kwargs) return data.loc[ss_rng[0]:ss_rng[1]]
def bdib(ticker, dt, typ='TRADE', batch=False, log=logs.LOG_LEVEL) -> pd.DataFrame: """ Download intraday data and save to cache Args: ticker: ticker name dt: date to download typ: [TRADE, BID, ASK, BID_BEST, ASK_BEST, BEST_BID, BEST_ASK] batch: whether is batch process to download data log: level of logs Returns: pd.DataFrame """ from xbbg.core import missing logger = logs.get_logger(bdib, level=log) t_1 = pd.Timestamp('today').date() - pd.Timedelta('1D') whole_day = pd.Timestamp(dt).date() < t_1 if (not whole_day) and batch: logger.warning(f'querying date {t_1} is too close, ignoring download ...') return pd.DataFrame() cur_dt = pd.Timestamp(dt).strftime('%Y-%m-%d') asset = ticker.split()[-1] info_log = f'{ticker} / {cur_dt} / {typ}' if asset in ['Equity', 'Curncy', 'Index', 'Comdty']: exch = const.exch_info(ticker=ticker) if exch.empty: return pd.DataFrame() else: logger.error(f'unknown asset type: {asset}') return pd.DataFrame() time_fmt = '%Y-%m-%dT%H:%M:%S' time_idx = pd.DatetimeIndex([ f'{cur_dt} {exch.allday[0]}', f'{cur_dt} {exch.allday[-1]}'] ).tz_localize(exch.tz).tz_convert(DEFAULT_TZ).tz_convert('UTC') if time_idx[0] > time_idx[1]: time_idx -= pd.TimedeltaIndex(['1D', '0D']) q_tckr = ticker if exch.get('is_fut', False): if 'freq' not in exch: logger.error(f'[freq] missing in info for {info_log} ...') is_sprd = exch.get('has_sprd', False) and (len(ticker[:-1]) != exch['tickers'][0]) if not is_sprd: q_tckr = fut_ticker(gen_ticker=ticker, dt=dt, freq=exch['freq']) if q_tckr == '': logger.error(f'cannot find futures ticker for {ticker} ...') return pd.DataFrame() info_log = f'{q_tckr} / {cur_dt} / {typ}' miss_kw = dict(ticker=ticker, dt=dt, typ=typ, func='bdib') cur_miss = missing.current_missing(**miss_kw) if cur_miss >= 2: if batch: return pd.DataFrame() logger.info(f'{cur_miss} trials with no data {info_log}') return pd.DataFrame() logger.info(f'loading data from Bloomberg: {info_log} ...') con, _ = create_connection() data = con.bdib( ticker=q_tckr, event_type=typ, interval=1, start_datetime=time_idx[0].strftime(time_fmt), end_datetime=time_idx[1].strftime(time_fmt), ) if not isinstance(data, pd.DataFrame): raise ValueError(f'unknown output format: {type(data)}') if data.empty: logger.warning(f'no data for {info_log} ...') missing.update_missing(**miss_kw) return pd.DataFrame() data = data.tz_localize('UTC').tz_convert(exch.tz) storage.save_intraday(data=data, ticker=ticker, dt=dt, typ=typ) return pd.DataFrame() if batch else assist.format_intraday(data=data, ticker=ticker)