コード例 #1
0
    def test_mon_U(self, mon_series, series, mon_triangular, add_dims, kind,
                   name, use_dask):
        """
        Train on
        hist: U
        ref: U + monthly cycle

        Predict on hist to get ref
        """
        u = np.random.rand(10000)

        # Define distributions
        xd = uniform(loc=1, scale=1)
        yd = uniform(loc=2, scale=2)
        noise = uniform(loc=0, scale=1e-7)

        # Generate random numbers
        x = xd.ppf(u)
        y = yd.ppf(u) + noise.ppf(u)

        # Test train
        hist = sim = series(x, name)
        if use_dask:
            sim = sim.chunk({"time": -1})
        if add_dims:
            hist = hist.expand_dims(site=[0, 1, 2, 3, 4])
            sim = sim.expand_dims(site=[0, 1, 2, 3, 4])
            sel = {"site": 0}
        else:
            sel = {}

        ref = mon_series(y, name)

        QDM = QuantileDeltaMapping(kind=kind,
                                   group="time.month",
                                   nquantiles=40)
        QDM.train(ref, hist)
        p = QDM.adjust(sim, interp="linear" if kind == "+" else "nearest")

        q = QDM.ds.coords["quantiles"]
        expected = get_correction(xd.ppf(q), yd.ppf(q), kind)

        expected = apply_correction(mon_triangular[:, np.newaxis],
                                    expected[np.newaxis, :], kind)
        np.testing.assert_array_almost_equal(QDM.ds.af.sel(quantiles=q, **sel),
                                             expected, 1)

        # Test predict
        np.testing.assert_allclose(p.isel(**sel), ref, rtol=0.1, atol=0.2)
コード例 #2
0
ファイル: test_adjustment.py プロジェクト: Ouranosinc/xclim
    def test_cannon_and_diagnostics(self, cannon_2015_dist, cannon_2015_rvs):
        ref, hist, sim = cannon_2015_rvs(15000, random=False)

        # Quantile mapping
        with set_options(sdba_extra_output=True):
            QDM = QuantileDeltaMapping.train(ref,
                                             hist,
                                             kind="*",
                                             group="time",
                                             nquantiles=50)
            scends = QDM.adjust(sim)

        assert isinstance(scends, xr.Dataset)

        sim_q_exp = sim.rank(dim="time", pct=True)
        np.testing.assert_array_equal(sim_q_exp, scends.sim_q)

        # Theoretical results
        # ref, hist, sim = cannon_2015_dist
        # u1 = equally_spaced_nodes(1001, None)
        # u = np.convolve(u1, [0.5, 0.5], mode="valid")
        # pu = ref.ppf(u) * sim.ppf(u) / hist.ppf(u)
        # pu1 = ref.ppf(u1) * sim.ppf(u1) / hist.ppf(u1)
        # pdf = np.diff(u1) / np.diff(pu1)

        # mean = np.trapz(pdf * pu, pu)
        # mom2 = np.trapz(pdf * pu ** 2, pu)
        # std = np.sqrt(mom2 - mean ** 2)
        bc_sim = scends.scen
        np.testing.assert_almost_equal(bc_sim.mean(), 41.5, 1)
        np.testing.assert_almost_equal(bc_sim.std(), 16.7, 0)
コード例 #3
0
ファイル: test_services.py プロジェクト: brews/dodola
def test_train_qdm(kind):
    """Test that train_qdm outputs store giving sdba.adjustment.QuantileDeltaMapping

    Checks that output is consistent if we do "additive" or "multiplicative"
    QDM kinds.
    """
    # Setup input data.
    n_years = 10
    n = n_years * 365

    model_bias = 2
    ts = np.sin(np.linspace(-10 * 3.14, 10 * 3.14, n)) * 0.5
    hist = _datafactory(ts + model_bias)
    ref = _datafactory(ts)

    output_key = "memory://test_train_qdm/test_output.zarr"
    hist_key = "memory://test_train_qdm/hist.zarr"
    ref_key = "memory://test_train_qdm/ref.zarr"

    # Load up a fake repo with our input data in the place of big data and cloud
    # storage.
    repository.write(hist_key, hist)
    repository.write(ref_key, ref)

    train_qdm(
        historical=hist_key,
        reference=ref_key,
        out=output_key,
        variable="fakevariable",
        kind=kind,
    )

    assert QuantileDeltaMapping.from_dataset(repository.read(output_key))
コード例 #4
0
    def test_cannon(self, cannon_2015_dist, cannon_2015_rvs):
        ref, hist, sim = cannon_2015_rvs(15000, random=False)

        # Quantile mapping
        QDM = QuantileDeltaMapping(kind="*", group="time", nquantiles=50)
        QDM.train(ref, hist)
        bc_sim = QDM.adjust(sim)

        # Theoretical results
        # ref, hist, sim = cannon_2015_dist
        # u1 = equally_spaced_nodes(1001, None)
        # u = np.convolve(u1, [0.5, 0.5], mode="valid")
        # pu = ref.ppf(u) * sim.ppf(u) / hist.ppf(u)
        # pu1 = ref.ppf(u1) * sim.ppf(u1) / hist.ppf(u1)
        # pdf = np.diff(u1) / np.diff(pu1)

        # mean = np.trapz(pdf * pu, pu)
        # mom2 = np.trapz(pdf * pu ** 2, pu)
        # std = np.sqrt(mom2 - mean ** 2)

        np.testing.assert_almost_equal(bc_sim.mean(), 41.5, 1)
        np.testing.assert_almost_equal(bc_sim.std(), 16.7, 0)
コード例 #5
0
    def test_mon_U(self, mon_series, series, mon_triangular, kind, name):
        """
        Train on
        hist: U
        ref: U + monthly cycle

        Predict on hist to get ref
        """
        u = np.random.rand(10000)

        # Define distributions
        xd = uniform(loc=1, scale=1)
        yd = uniform(loc=2, scale=2)
        noise = uniform(loc=0, scale=1e-7)

        # Generate random numbers
        x = xd.ppf(u)
        y = yd.ppf(u) + noise.ppf(u)

        # Test train
        hist = sim = series(x, name)
        ref = mon_series(y, name)

        QDM = QuantileDeltaMapping(kind=kind,
                                   group="time.month",
                                   nquantiles=40)
        QDM.train(ref, hist)
        p = QDM.adjust(sim)

        q = QDM.ds.coords["quantiles"]
        expected = get_correction(xd.ppf(q), yd.ppf(q), kind)

        expected = apply_correction(mon_triangular[:, np.newaxis],
                                    expected[np.newaxis, :], kind)
        np.testing.assert_array_almost_equal(QDM.ds.af.sel(quantiles=q),
                                             expected, 1)

        # Test predict
        np.testing.assert_array_almost_equal(p, ref, 1)
コード例 #6
0
    def test_quantiles(self, series, kind, name):
        """Train on
        x : U(1,1)
        y : U(1,2)

        """
        u = np.random.rand(10000)

        # Define distributions
        xd = uniform(loc=1, scale=1)
        yd = uniform(loc=2, scale=4)

        # Generate random numbers with u so we get exact results for comparison
        x = xd.ppf(u)
        y = yd.ppf(u)

        # Test train
        hist = sim = series(x, name)
        ref = series(y, name)

        QDM = QuantileDeltaMapping(
            kind=kind,
            group="time",
            nquantiles=10,
        )
        QDM.train(ref, hist)
        p = QDM.adjust(sim, interp="linear")

        q = QDM.ds.coords["quantiles"]
        expected = get_correction(xd.ppf(q), yd.ppf(q), kind)

        # Results are not so good at the endpoints
        np.testing.assert_array_almost_equal(QDM.ds.af.T, expected, 1)

        # Test predict
        # Accept discrepancies near extremes
        middle = (u > 1e-2) * (u < 0.99)
        np.testing.assert_array_almost_equal(p[middle], ref[middle], 1)
コード例 #7
0
ファイル: diagnostics.py プロジェクト: ClimateImpactLab/xclim
def adapt_freq_graph():
    """
    Create a graphic with the additive adjustment factors estimated after applying the adapt_freq method.
    """
    n = 10000
    x = tu.series(synth_rainfall(2, 2, wet_freq=0.25, size=n), "pr")  # sim
    y = tu.series(synth_rainfall(2, 2, wet_freq=0.5, size=n), "pr")  # ref

    xp = adapt_freq(x, y, thresh=0).sim_ad

    fig, (ax1, ax2) = plt.subplots(2, 1)
    sx = x.sortby(x)
    sy = y.sortby(y)
    sxp = xp.sortby(xp)

    # Original and corrected series
    ax1.plot(sx.values, color="blue", lw=1.5, label="x : sim")
    ax1.plot(sxp.values, color="pink", label="xp : sim corrected")
    ax1.plot(sy.values, color="k", label="y : ref")
    ax1.legend()

    # Compute qm factors
    qm_add = QuantileDeltaMapping(kind="+", group="time").train(y, x).ds
    qm_mul = QuantileDeltaMapping(kind="*", group="time").train(y, x).ds

    qm_add_p = QuantileDeltaMapping(kind="+", group="time").train(y, xp).ds
    qm_mul_p = QuantileDeltaMapping(kind="*", group="time").train(y, xp).ds

    qm_add.cf.plot(ax=ax2, color="cyan", ls="--", label="+: y-x")
    qm_add_p.cf.plot(ax=ax2, color="cyan", label="+: y-xp")

    qm_mul.cf.plot(ax=ax2, color="brown", ls="--", label="*: y/x")
    qm_mul_p.cf.plot(ax=ax2, color="brown", label="*: y/xp")

    ax2.legend(loc="upper left", frameon=False)
    return fig
コード例 #8
0
ファイル: test_services.py プロジェクト: brews/dodola
def test_train_qdm_isel_slice():
    """Test that train_qdm outputs subset data when passed isel_slice"""
    # Setup input data.
    n_years = 10
    n = n_years * 365

    # Lazy way to make fake data for 2 latitudes...
    model_bias = 2
    ts = np.sin(np.linspace(-10 * 3.14, 10 * 3.14, n)) * 0.5
    hist1 = _datafactory(ts + model_bias)
    hist2 = _datafactory(ts + model_bias).assign_coords(
        {"lat": hist1["lat"].data + 1.0}
    )
    hist = xr.concat([hist1, hist2], dim="lat")
    ref1 = _datafactory(ts)
    ref2 = _datafactory(ts + model_bias).assign_coords({"lat": ref1["lat"].data + 1.0})
    ref = xr.concat([ref1, ref2], dim="lat")

    output_key = "memory://test_train_qdm_isel_slice/test_output.zarr"
    hist_key = "memory://test_train_qdm_isel_slice/hist.zarr"
    ref_key = "memory://test_train_qdm_isel_slice/ref.zarr"

    repository.write(hist_key, hist)
    repository.write(ref_key, ref)

    train_qdm(
        historical=hist_key,
        reference=ref_key,
        out=output_key,
        variable="fakevariable",
        kind="additive",
        isel_slice={"lat": slice(0, 1)},  # select only 1 of 2 lats by idx...
    )

    # Check we can read output and it's the selected value, only.
    ds_result = repository.read(output_key)
    np.testing.assert_equal(ds_result["lat"].data, ref["lat"].data[0])
    assert QuantileDeltaMapping.from_dataset(ds_result)
コード例 #9
0
ファイル: diagnostics.py プロジェクト: ClimateImpactLab/xclim
def cannon_2015_figure_2():
    n = 10000
    ref, hist, sim = tu.cannon_2015_rvs(n, random=False)
    QM = EmpiricalQuantileMapping(kind="*", group="time", interp="linear")
    QM.train(ref, hist)
    sim_eqm = QM.predict(sim)

    DQM = DetrendedQuantileMapping(kind="*", group="time", interp="linear")
    DQM.train(ref, hist)
    sim_dqm = DQM.predict(sim, degree=0)

    QDM = QuantileDeltaMapping(kind="*", group="time", interp="linear")
    QDM.train(ref, hist)
    sim_qdm = QDM.predict(sim)

    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(11, 4))
    x = np.linspace(0, 105, 50)
    ax1.plot(x, gaussian_kde(ref)(x), color="r", label="Obs hist")
    ax1.plot(x, gaussian_kde(hist)(x), color="k", label="GCM hist")
    ax1.plot(x, gaussian_kde(sim)(x), color="blue", label="GCM simure")

    ax1.plot(x, gaussian_kde(sim_qdm)(x), color="lime", label="QDM future")
    ax1.plot(x,
             gaussian_kde(sim_eqm)(x),
             color="darkgreen",
             ls="--",
             label="QM future")
    ax1.plot(x,
             gaussian_kde(sim_dqm)(x),
             color="lime",
             ls=":",
             label="DQM future")
    ax1.legend(frameon=False)
    ax1.set_xlabel("Value")
    ax1.set_ylabel("Density")

    tau = np.array([0.25, 0.5, 0.75, 0.95, 0.99]) * 100
    bc_gcm = (scoreatpercentile(sim, tau) -
              scoreatpercentile(hist, tau)) / scoreatpercentile(hist, tau)
    bc_qdm = (scoreatpercentile(sim_qdm, tau) -
              scoreatpercentile(ref, tau)) / scoreatpercentile(ref, tau)
    bc_eqm = (scoreatpercentile(sim_eqm, tau) -
              scoreatpercentile(ref, tau)) / scoreatpercentile(ref, tau)
    bc_dqm = (scoreatpercentile(sim_dqm, tau) -
              scoreatpercentile(ref, tau)) / scoreatpercentile(ref, tau)

    ax2.plot([0, 1], [0, 1], ls=":", color="blue")
    ax2.plot(bc_gcm, bc_gcm, "-", color="blue", label="GCM")
    ax2.plot(bc_gcm, bc_qdm, marker="o", mfc="lime", label="QDM")
    ax2.plot(
        bc_gcm,
        bc_eqm,
        marker="o",
        mfc="darkgreen",
        ls=":",
        color="darkgreen",
        label="QM",
    )
    ax2.plot(
        bc_gcm,
        bc_dqm,
        marker="s",
        mec="lime",
        mfc="w",
        ls="--",
        color="lime",
        label="DQM",
    )

    for i, s in enumerate(tau / 100):
        ax2.text(bc_gcm[i],
                 bc_eqm[i],
                 f"{s}  ",
                 ha="right",
                 va="center",
                 fontsize=9)
    ax2.set_xlabel("GCM relative change")
    ax2.set_ylabel("Bias adjusted relative change")
    ax2.legend(loc="upper left", frameon=False)
    ax2.set_aspect("equal")
    plt.tight_layout()
    return fig