コード例 #1
0
ファイル: test_utils.py プロジェクト: Ouranosinc/xclim
def test_equally_spaced_nodes():
    x = u.equally_spaced_nodes(5, eps=1e-4)
    assert len(x) == 7
    d = np.diff(x)
    np.testing.assert_almost_equal(d[0], d[1] / 2, 3)

    x = u.equally_spaced_nodes(1)
    np.testing.assert_almost_equal(x[0], 0.5)
コード例 #2
0
def train_quantiledeltamapping(
    reference, historical, variable, kind, quantiles_n=100, window_n=31
):
    """Train quantile delta mapping

    Parameters
    ----------
    reference : xr.Dataset
        Dataset to use as model reference. Target variable must have a units attribute.
    historical : xr.Dataset
        Dataset to use as historical simulation. Target variable must have a units attribute.
    variable : str
        Name of target variable to extract from `historical` and `reference`.
    kind : {"+", "*"}
        Kind of variable. Used for QDM scaling.
    quantiles_n : int, optional
        Number of quantiles for QDM.
    window_n : int, optional
        Centered window size for day-of-year grouping.

    Returns
    -------
    xclim.sdba.adjustment.QuantileDeltaMapping
    """
    qdm = sdba.adjustment.QuantileDeltaMapping.train(
        ref=reference[variable],
        hist=historical[variable],
        kind=str(kind),
        group=sdba.Grouper("time.dayofyear", window=int(window_n)),
        nquantiles=equally_spaced_nodes(int(quantiles_n), eps=None),
    )
    return qdm
コード例 #3
0
ファイル: utils.py プロジェクト: ClimateImpactLab/xclim
def cannon_2015_rvs(n, random=True):
    # Frozen distributions
    fd = cannon_2015_dist()

    if random:
        r = [d.rvs(n) for d in fd]
    else:
        u = equally_spaced_nodes(n, None)
        r = [d.ppf(u) for d in fd]

    return map(lambda x: series(x, "pr"), r)
コード例 #4
0
    def _make_qm(a, *, group="time.month"):
        a = np.atleast_2d(a)
        n, m = a.shape
        mo = range(1, m + 1)

        if group.prop:
            q = equally_spaced_nodes(n, None)
            dims = ("quantiles", group.prop)
            coords = {"quantiles": q, "month": mo}
        else:
            q = equally_spaced_nodes(m, None)
            dims = ("quantiles", )
            coords = {"quantiles": q}
            a = a[0]

        return xr.DataArray(
            a,
            dims=dims,
            coords=coords,
            attrs={
                "group": group,
                "window": 1
            },
        )
コード例 #5
0
ファイル: test_utils.py プロジェクト: Ouranosinc/xclim
def test_interp_on_quantiles_monthly():
    t = xr.cftime_range("2000-01-01",
                        "2030-12-31",
                        freq="D",
                        calendar="noleap")
    ref = xr.DataArray(
        (-20 * np.cos(2 * np.pi * t.dayofyear / 365) +
         2 * np.random.random_sample((t.size, )) + 273.15 + 0.1 *
         (t - t[0]).days / 365),  # "warming" of 1K per decade,
        dims=("time", ),
        coords={"time": t},
        attrs={"units": "K"},
    )
    sim = xr.DataArray(
        (-18 * np.cos(2 * np.pi * t.dayofyear / 365) +
         2 * np.random.random_sample((t.size, )) + 273.15 + 0.11 *
         (t - t[0]).days / 365),  # "warming" of 1.1K per decade
        dims=("time", ),
        coords={"time": t},
        attrs={"units": "K"},
    )

    ref = ref.sel(time=slice(None, "2015-01-01"))
    hist = sim.sel(time=slice(None, "2015-01-01"))

    group = Grouper("time.month")
    quantiles = u.equally_spaced_nodes(15, eps=1e-6)
    ref_q = group.apply(nbu.quantile, ref, main_only=True, q=quantiles)
    hist_q = group.apply(nbu.quantile, hist, main_only=True, q=quantiles)
    af = u.get_correction(hist_q, ref_q, "+")

    for interp in ["nearest", "linear", "cubic"]:
        afi = u.interp_on_quantiles(sim,
                                    hist_q,
                                    af,
                                    group="time.month",
                                    method=interp,
                                    extrapolation="constant")
        assert afi.isnull().sum("time") == 0, interp