コード例 #1
0
 def test_constant(self):
     a = xdl.convert_to_tensor(1)
     b = xdl.convert_to_tensor([10, 20])
     c = xdl.convert_to_tensor(np.array([30, 40]))
     a, b, c = xdl.execute([a, b, c])
     self.assertTrue(a == 1)
     self.assertTrue((b == np.array([10, 20])).all())
     self.assertTrue((c == np.array([30, 40])).all())
コード例 #2
0
 def test_all(self):
     dense = xdl.mock_dense_op(shape=[1, 16], value=0.01, name_="dense")
     labels = xdl.mock_dense_op(shape=[1, 1], value=1.0, name_="label")
     ids = xdl.convert_to_tensor(
         np.array([[0, 0], [0, 1], [0, 2]], dtype=np.int64))
     values = xdl.convert_to_tensor(
         np.array([1.0, 2.0, 3.0], dtype=np.float32))
     segments = xdl.convert_to_tensor(np.array([3], dtype=np.int32))
     sparse = xdl.SparseTensor(ids, values, segments)
     emb = xdl.embedding("sparse",
                         sparse,
                         xdl.Ones(),
                         1,
                         16,
                         'sum',
                         vtype='hash')
     loss = model(dense, emb, labels)
     train_op = xdl.SGD(0.5).optimize()
     sess = xdl.TrainSession()
     _, l, g = sess.run(
         [train_op, loss,
          xdl.get_sparse_grads('sparse').grad])
     self.assertTrue((l == np.array(0.0024364376, dtype=np.float32)).all())
     self.assertTrue(
         (g == np.array([[-0.002433472], [-0.004866944], [-0.007300416]],
                        dtype=np.float32)).all())
     sparse_var = xdl.get_variable_by_name('sparse')
     weights = sess.run(
         sparse_var.gather(
             np.array([[0, 0], [0, 1], [0, 2]], dtype=np.int64)))
     self.assertTrue(
         (weights == np.array([[1.0012168], [1.0024334], [1.0036502]],
                              dtype=np.float32)).all())
     _, l, g = sess.run(
         [train_op, loss,
          xdl.get_sparse_grads('sparse').grad])
     self.assertTrue((l == np.array(0.002395329, dtype=np.float32)).all())
     self.assertTrue(
         (g == np.array([[-0.0023924622], [-0.0047849244], [-0.0071773864]],
                        dtype=np.float32)).all())
     weights = sess.run(
         sparse_var.gather(
             np.array([[0, 0], [0, 1], [0, 2]], dtype=np.int64)))
     self.assertTrue(
         (weights == np.array([[1.002413], [1.0048258], [1.0072389]],
                              dtype=np.float32)).all())
コード例 #3
0
def main():
    dense = xdl.mock_dense_op(shape=[1, 16], value=0.01, name_="dense")
    labels = xdl.mock_dense_op(shape=[1, 1], value=1.0, name_="label")
    ids = xdl.convert_to_tensor(
        np.array([[0, 0], [0, 1], [0, 2]], dtype=np.int64))
    values = xdl.convert_to_tensor(np.array([1.0, 2.0, 3.0], dtype=np.float32))
    segments = xdl.convert_to_tensor(np.array([3], dtype=np.int32))
    sparse = xdl.SparseTensor(ids, values, segments)
    emb = xdl.embedding("sparse",
                        sparse,
                        xdl.Ones(),
                        1,
                        16,
                        'sum',
                        vtype='hash')
    loss = model(dense, emb, labels)
    train_op = xdl.SGD(0.5).optimize()
    sess = xdl.TrainSession()
    loss, gradients = sess.run([loss, xdl.get_sparse_grads('sparse').grad])
    return loss, gradients
コード例 #4
0
def mock_embedding(name1, name2):
    ids = xdl.convert_to_tensor(
        np.array([[0, 0], [0, 1], [0, 2]], dtype=np.int64))
    values = xdl.convert_to_tensor(np.array([1.0, 2.0, 3.0], dtype=np.float32))
    segments = xdl.convert_to_tensor(np.array([3], dtype=np.int32))
    sparse = xdl.SparseTensor(ids, values, segments)
    emb = xdl.embedding(name1,
                        sparse,
                        xdl.Ones(),
                        embed_dim,
                        16,
                        'sum',
                        vtype='hash')
    emb.set_shape((1, 3))

    ids2 = xdl.convert_to_tensor(
        np.array([[0, 1], [0, 2], [1, 1]], dtype=np.int64))
    values2 = xdl.convert_to_tensor(np.array([1.0, 2.0, 3.0],
                                             dtype=np.float32))
    segments2 = xdl.convert_to_tensor(np.array([3], dtype=np.int32))
    sparse2 = xdl.SparseTensor(ids2, values2, segments2)
    emb2 = xdl.embedding(name2,
                         sparse2,
                         xdl.Ones(),
                         embed_dim,
                         16,
                         'sum',
                         vtype='hash')
    emb2.set_shape((1, 3))
    return [emb, emb2]