コード例 #1
0
def subtract_background(signal, background, plot=False):

  x, y = smooth_spectrum.interpolate(background[0], background[1])
  y_fitted = smoothing.savitzky_golay_filter(x, y, half_window=32, degree=3)[1]
  signal_x, signal_y = signal
  signal_x, signal_y = smooth_spectrum.interpolate(signal[0], signal[1])

  x_interp_size = x.size()
  for i, x_i in enumerate(reversed(x)):
    if x_i not in signal[0]:
      assert x[x_interp_size - i - 1] == x_i
      del signal_x[x_interp_size - i - 1]
      del signal_y[x_interp_size - i - 1]
      del y_fitted[x_interp_size - i - 1]

  background_subtracted = signal_y - y_fitted

  if plot:
    from matplotlib import pyplot
    pyplot.plot(signal[0], signal[1], linewidth=2, label="signal+background")
    pyplot.plot(background[0], background[1], linewidth=2, label="background")
    pyplot.plot(signal_x, y_fitted, linewidth=2, label="background_fit")
    pyplot.plot(signal_x, background_subtracted, linewidth=2, label="signal")
    pyplot.legend(loc=2)
    pyplot.ylabel("Intensity", fontsize=15)
    pyplot.xlabel("Pixel column", fontsize=15)
    pyplot.show()

  return signal_x, background_subtracted
コード例 #2
0
def subtract_background(signal, background, plot=False):

  x, y = smooth_spectrum.interpolate(background[0], background[1])
  y_fitted = smoothing.savitzky_golay_filter(x, y, half_window=32, degree=3)[1]
  signal_x, signal_y = signal
  signal_x, signal_y = smooth_spectrum.interpolate(signal[0], signal[1])

  x_interp_size = x.size()
  for i, x_i in enumerate(reversed(x)):
    if x_i not in signal[0]:
      assert x[x_interp_size - i - 1] == x_i
      del signal_x[x_interp_size - i - 1]
      del signal_y[x_interp_size - i - 1]
      del y_fitted[x_interp_size - i - 1]

  background_subtracted = signal_y - y_fitted

  if plot:
    from matplotlib import pyplot
    pyplot.plot(signal[0], signal[1], linewidth=2, label="signal+background")
    pyplot.plot(background[0], background[1], linewidth=2, label="background")
    pyplot.plot(signal_x, y_fitted, linewidth=2, label="background_fit")
    pyplot.plot(signal_x, background_subtracted, linewidth=2, label="signal")
    pyplot.legend(loc=2)
    pyplot.ylabel("Intensity", fontsize=15)
    pyplot.xlabel("Pixel column", fontsize=15)
    pyplot.show()

  return signal_x, background_subtracted
コード例 #3
0
def run(args):
  processed = iotbx.phil.process_command_line(
    args=args, master_string=master_phil_str)
  args = processed.remaining_args
  work_params = processed.work.extract().xes
  processed.work.show()
  assert len(args) == 1
  output_dirname = work_params.output_dirname
  roi = cspad_tbx.getOptROI(work_params.roi)
  bg_roi = cspad_tbx.getOptROI(work_params.bg_roi)
  gain_map_path = work_params.gain_map
  estimated_gain = work_params.estimated_gain
  nproc = work_params.nproc
  photon_threshold = work_params.photon_threshold
  method = work_params.method
  print output_dirname
  if output_dirname is None:
    output_dirname = os.path.join(os.path.dirname(args[0]), "finalise")
    print output_dirname
  hist_d = easy_pickle.load(args[0])
  if len(hist_d.keys())==2:
    hist_d = hist_d['histogram']
  pixel_histograms = view_pixel_histograms.pixel_histograms(
    hist_d, estimated_gain=estimated_gain)
  result = xes_from_histograms(
    pixel_histograms, output_dirname=output_dirname,
    gain_map_path=gain_map_path, estimated_gain=estimated_gain,
    method=method, nproc=nproc,
    photon_threshold=photon_threshold, roi=roi, run=work_params.run)

  if bg_roi is not None:
    bg_outdir = os.path.normpath(output_dirname)+"_bg"
    bg_result = xes_from_histograms(
      pixel_histograms, output_dirname=bg_outdir,
      gain_map_path=gain_map_path, estimated_gain=estimated_gain,
      method=method, nproc=nproc,
      photon_threshold=photon_threshold, roi=bg_roi)

    from xfel.command_line.subtract_background import subtract_background
    signal = result.spectrum
    background = bg_result.spectrum
    signal = (signal[0].as_double(), signal[1])
    background = (background[0].as_double(), background[1])
    signal_x, background_subtracted = subtract_background(signal, background, plot=True)
    f = open(os.path.join(output_dirname, "background_subtracted.txt"), "wb")
    print >> f, "\n".join(["%i %f" %(x, y)
                           for x, y in zip(signal_x, background_subtracted)])
    f.close()

  else:
    from xfel.command_line import smooth_spectrum
    from scitbx.smoothing import savitzky_golay_filter
    x, y = result.spectrum[0].as_double(), result.spectrum[1]
    x, y = smooth_spectrum.interpolate(x, y)
    x, y_smoothed = savitzky_golay_filter(
      x, y, 20, 4)
    smooth_spectrum.estimate_signal_to_noise(x, y, y_smoothed)
コード例 #4
0
def run(args):
    processed = iotbx.phil.process_command_line(args=args,
                                                master_string=master_phil_str)
    args = processed.remaining_args
    work_params = processed.work.extract().xes
    processed.work.show()
    assert len(args) == 1
    output_dirname = work_params.output_dirname
    roi = cspad_tbx.getOptROI(work_params.roi)
    bg_roi = cspad_tbx.getOptROI(work_params.bg_roi)
    gain_map_path = work_params.gain_map
    estimated_gain = work_params.estimated_gain
    nproc = work_params.nproc
    photon_threshold = work_params.photon_threshold
    method = work_params.method
    print output_dirname
    if output_dirname is None:
        output_dirname = os.path.join(os.path.dirname(args[0]), "finalise")
        print output_dirname
    hist_d = easy_pickle.load(args[0])
    if len(hist_d.keys()) == 2:
        hist_d = hist_d['histogram']
    pixel_histograms = view_pixel_histograms.pixel_histograms(
        hist_d, estimated_gain=estimated_gain)
    result = xes_from_histograms(pixel_histograms,
                                 output_dirname=output_dirname,
                                 gain_map_path=gain_map_path,
                                 estimated_gain=estimated_gain,
                                 method=method,
                                 nproc=nproc,
                                 photon_threshold=photon_threshold,
                                 roi=roi,
                                 run=work_params.run)

    if bg_roi is not None:
        bg_outdir = os.path.normpath(output_dirname) + "_bg"
        bg_result = xes_from_histograms(pixel_histograms,
                                        output_dirname=bg_outdir,
                                        gain_map_path=gain_map_path,
                                        estimated_gain=estimated_gain,
                                        method=method,
                                        nproc=nproc,
                                        photon_threshold=photon_threshold,
                                        roi=bg_roi)

        from xfel.command_line.subtract_background import subtract_background
        signal = result.spectrum
        background = bg_result.spectrum
        signal = (signal[0].as_double(), signal[1])
        background = (background[0].as_double(), background[1])
        signal_x, background_subtracted = subtract_background(signal,
                                                              background,
                                                              plot=True)
        f = open(os.path.join(output_dirname, "background_subtracted.txt"),
                 "wb")
        print >> f, "\n".join([
            "%i %f" % (x, y) for x, y in zip(signal_x, background_subtracted)
        ])
        f.close()

    else:
        from xfel.command_line import smooth_spectrum
        from scitbx.smoothing import savitzky_golay_filter
        x, y = result.spectrum[0].as_double(), result.spectrum[1]
        x, y = smooth_spectrum.interpolate(x, y)
        x, y_smoothed = savitzky_golay_filter(x, y, 20, 4)
        smooth_spectrum.estimate_signal_to_noise(x, y, y_smoothed)