コード例 #1
0
    def _test_train_model_from_features(self, sparse_gp, multiple_kernels):
        gp_repurposer = GpRepurposer(self.source_model,
                                     self.source_model_layers)

        num_inducing = self.num_data_points_to_train
        gp_repurposer.NUM_INDUCING_SPARSE_GP = num_inducing

        if not sparse_gp:  # Select a small data set to apply normal GP classification
            self.train_features = self.train_features[:num_inducing]
            self.train_labels = self.train_labels[:num_inducing]
            self.feature_mean = self.train_features.mean(axis=0)

        if multiple_kernels:
            trained_model = gp_repurposer._train_model_from_features(
                self.train_features, self.train_labels, {
                    'l1': self.train_feature_indices[:4],
                    'l2': self.train_feature_indices[4:]
                })
        else:
            trained_model = gp_repurposer._train_model_from_features(
                self.train_features, self.train_labels,
                {'l1': self.train_feature_indices})

        assert np.array_equal(gp_repurposer.feature_mean, self.feature_mean)
        self._validate_trained_gp_model(trained_model, sparse_gp, num_inducing,
                                        multiple_kernels)
コード例 #2
0
    def _test_gp_serialisation(self, sparse_gp, multiple_kernels):
        gp_repurposer = GpRepurposer(self.source_model,
                                     self.source_model_layers,
                                     apply_l2_norm=True)
        num_inducing = 2
        gp_repurposer.NUM_INDUCING_SPARSE_GP = num_inducing

        if not sparse_gp:  # Select a small data set to apply normal GP classification
            self.train_features = self.train_features[:num_inducing]
            self.train_labels = self.train_labels[:num_inducing]
            self.feature_mean = self.train_features.mean(axis=0)

        if multiple_kernels:
            gp_repurposer.target_model = gp_repurposer._train_model_from_features(
                self.train_features, self.train_labels, {
                    'l1': self.train_feature_indices[:4],
                    'l2': self.train_feature_indices[4:]
                })
        else:
            gp_repurposer.target_model = gp_repurposer._train_model_from_features(
                self.train_features, self.train_labels,
                {'l1': self.train_feature_indices})

        # Save and load repurposer to test serialization
        loaded_repurposer = self._save_and_load_repurposer(gp_repurposer)

        # Validate repurposer properties
        self._compare_gp_repurposers(gp_repurposer, loaded_repurposer)

        # Get prediction results using both repurposers
        predictions_before = gp_repurposer._predict_probability_from_features(
            self.test_features[:self.num_data_points_to_predict])
        predictions_after = loaded_repurposer._predict_probability_from_features(
            self.test_features[:self.num_data_points_to_predict])

        # Compare probabilities predicted per test instance
        self.assertTrue(
            predictions_before.shape == predictions_after.shape,
            "Prediction shape is incorrect. Expected: {} Actual: {}".format(
                predictions_before.shape, predictions_after.shape))

        for sample_id, prediction in enumerate(predictions_before):
            self.assertTrue(
                np.allclose(prediction, predictions_after[sample_id]),
                "Incorrect prediction for sample id: {}. Expected: {} Actual: {}"
                .format(sample_id, predictions_before[sample_id],
                        predictions_after[sample_id]))

        # Validate if accuracy is above expected threshold
        predicted_labels = np.argmax(predictions_after, axis=1)
        accuracy = np.mean(predicted_labels ==
                           self.test_labels[:self.num_data_points_to_predict])
        expected_accuracy = 0.3
        self.assertTrue(
            accuracy >= expected_accuracy,
            "Accuracy {} less than {}".format(accuracy, expected_accuracy))
コード例 #3
0
    def test_binary_classification(self):
        train_features = np.array([[0.0286274, 0.41107054, 0.30557073],
                                   [0.18646135, 0.71026038, 0.87030804],
                                   [0.46904668, 0.96190886, 0.85772885],
                                   [0.40327128, 0.5739354, 0.21895921],
                                   [0.53548, 0.9645708, 0.56493308],
                                   [0.80917639, 0.78891976, 0.96257564],
                                   [0.10951679, 0.75733494, 0.10935291]])
        train_labels = np.array([0, 0, 0, 1, 0, 0, 1])
        gp_repurposer = GpRepurposer(self.source_model,
                                     self.source_model_layers)
        gp_repurposer.target_model = gp_repurposer._train_model_from_features(
            train_features, train_labels, {'l1': np.arange(0, 3)})
        self.assertTrue(
            len(gp_repurposer.target_model) == 1,
            "Number of GP models expected: 1. Got: {}".format(
                len(gp_repurposer.target_model)))

        # Validate predicted probabilities
        test_features = np.array([[0.63747595, 0.86516482, 0.21255967],
                                  [0.33403457, 0.43162212, 0.77119909],
                                  [0.1678248, 0.41870605, 0.37232554]])
        test_labels = np.array([1, 0, 0])
        expected_probabilities = np.array([[0.48597323, 0.51402677],
                                           [0.67488224, 0.32511776],
                                           [0.55386502, 0.44613498]])
        predicted_probabilities = gp_repurposer._predict_probability_from_features(
            test_features)
        self.assertTrue(
            np.allclose(predicted_probabilities, expected_probabilities))

        # Validate predicted labels
        predicted_labels = gp_repurposer._predict_label_from_features(
            test_features)
        self.assertTrue(np.array_equal(predicted_labels, test_labels))
コード例 #4
0
ファイル: test_gp_repurposer.py プロジェクト: zhiwen1024/xfer
 def test_predict_probability_from_features(self):
     gp_repurposer = GpRepurposer(self.source_model, self.source_model_layers, apply_l2_norm=True)
     gp_repurposer.target_model = gp_repurposer._train_model_from_features(
         self.train_features[:self.num_data_points_to_train],
         self.train_labels[:self.num_data_points_to_train],
         {'l1': self.train_feature_indices})
     predictions = gp_repurposer._predict_probability_from_features(self.test_features
                                                                    [:self.num_data_points_to_predict])
     self._validate_prediction_results(predictions, test_predict_probability=True,
                                       expected_accuracy=self.expected_accuracy_from_features,
                                       num_predictions=self.num_data_points_to_predict)