コード例 #1
0
    def test_early_stopping(self, local_cuda_cluster: LocalCUDACluster) -> None:
        from sklearn.datasets import load_breast_cancer
        with Client(local_cuda_cluster) as client:
            X, y = load_breast_cancer(return_X_y=True)
            X, y = da.from_array(X), da.from_array(y)

            m = dxgb.DaskDMatrix(client, X, y)

            valid = dxgb.DaskDMatrix(client, X, y)
            early_stopping_rounds = 5
            booster = dxgb.train(client, {'objective': 'binary:logistic',
                                          'eval_metric': 'error',
                                          'tree_method': 'gpu_hist'}, m,
                                 evals=[(valid, 'Valid')],
                                 num_boost_round=1000,
                                 early_stopping_rounds=early_stopping_rounds)[
                                     'booster']
            assert hasattr(booster, 'best_score')
            dump = booster.get_dump(dump_format='json')
            assert len(dump) - booster.best_iteration == early_stopping_rounds + 1

            valid_X = X
            valid_y = y
            cls = dxgb.DaskXGBClassifier(objective='binary:logistic',
                                         tree_method='gpu_hist',
                                         n_estimators=100)
            cls.client = client
            cls.fit(X, y, early_stopping_rounds=early_stopping_rounds,
                    eval_set=[(valid_X, valid_y)])
            booster = cls.get_booster()
            dump = booster.get_dump(dump_format='json')
            assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
コード例 #2
0
def test_categorical(local_cuda_cluster: LocalCUDACluster) -> None:
    with Client(local_cuda_cluster) as client:
        import dask_cudf

        rounds = 10
        X, y = make_categorical(client, 10000, 30, 13)
        X = dask_cudf.from_dask_dataframe(X)

        X_onehot, _ = make_categorical(client, 10000, 30, 13, True)
        X_onehot = dask_cudf.from_dask_dataframe(X_onehot)

        parameters = {"tree_method": "gpu_hist"}

        m = dxgb.DaskDMatrix(client, X_onehot, y, enable_categorical=True)
        by_etl_results = dxgb.train(
            client,
            parameters,
            m,
            num_boost_round=rounds,
            evals=[(m, "Train")],
        )["history"]

        m = dxgb.DaskDMatrix(client, X, y, enable_categorical=True)
        output = dxgb.train(
            client,
            parameters,
            m,
            num_boost_round=rounds,
            evals=[(m, "Train")],
        )
        by_builtin_results = output["history"]

        np.testing.assert_allclose(
            np.array(by_etl_results["Train"]["rmse"]),
            np.array(by_builtin_results["Train"]["rmse"]),
            rtol=1e-3,
        )
        assert tm.non_increasing(by_builtin_results["Train"]["rmse"])

        model = output["booster"]
        with tempfile.TemporaryDirectory() as tempdir:
            path = os.path.join(tempdir, "model.json")
            model.save_model(path)
            with open(path, "r") as fd:
                categorical = json.load(fd)

            categories_sizes = np.array(
                categorical["learner"]["gradient_booster"]["model"]["trees"]
                [-1]["categories_sizes"])
            assert categories_sizes.shape[0] != 0
            np.testing.assert_allclose(categories_sizes, 1)
コード例 #3
0
    def test_data_initialization(self, local_cuda_cluster: LocalCUDACluster) -> None:
        with Client(local_cuda_cluster) as client:
            X, y, _ = generate_array()
            fw = da.random.random((random_cols, ))
            fw = fw - fw.min()
            m = dxgb.DaskDMatrix(client, X, y, feature_weights=fw)

            workers = _get_client_workers(client)
            rabit_args = client.sync(dxgb._get_rabit_args, len(workers), client)

            def worker_fn(worker_addr: str, data_ref: Dict) -> None:
                with dxgb.RabitContext(rabit_args):
                    local_dtrain = dxgb._dmatrix_from_list_of_parts(**data_ref)
                    fw_rows = local_dtrain.get_float_info("feature_weights").shape[0]
                    assert fw_rows == local_dtrain.num_col()

            futures = []
            for i in range(len(workers)):
                futures.append(
                    client.submit(
                        worker_fn,
                        workers[i],
                        m._create_fn_args(workers[i]),
                        pure=False,
                        workers=[workers[i]]
                    )
                )
            client.gather(futures)
コード例 #4
0
    def test_dask_array(self):
        with LocalCUDACluster() as cluster:
            with Client(cluster) as client:
                import cupy as cp
                cp.cuda.runtime.setDevice(0)
                X, y = generate_array()

                X = X.map_blocks(cp.asarray)
                y = y.map_blocks(cp.asarray)
                dtrain = dxgb.DaskDMatrix(client, X, y)
                out = dxgb.train(client, {'tree_method': 'gpu_hist'},
                                 dtrain=dtrain,
                                 evals=[(dtrain, 'X')],
                                 num_boost_round=2)
                from_dmatrix = dxgb.predict(client, out, dtrain).compute()
                inplace_predictions = dxgb.inplace_predict(client, out,
                                                           X).compute()
                single_node = out['booster'].predict(
                    xgboost.DMatrix(X.compute()))
                np.testing.assert_allclose(single_node, from_dmatrix)
                device = cp.cuda.runtime.getDevice()
                assert device == inplace_predictions.device.id
                single_node = cp.array(single_node)
                assert device == single_node.device.id
                cp.testing.assert_allclose(single_node, inplace_predictions)
コード例 #5
0
    def test_gpu_hist(self, params, num_rounds, dataset):
        with LocalCUDACluster(n_workers=2) as cluster:
            with Client(cluster) as client:
                params['tree_method'] = 'gpu_hist'
                params = dataset.set_params(params)
                # multi class doesn't handle empty dataset well (empty
                # means at least 1 worker has data).
                if params['objective'] == "multi:softmax":
                    return
                # It doesn't make sense to distribute a completely
                # empty dataset.
                if dataset.X.shape[0] == 0:
                    return

                chunk = 128
                X = da.from_array(dataset.X,
                                  chunks=(chunk, dataset.X.shape[1]))
                y = da.from_array(dataset.y, chunks=(chunk, ))
                if dataset.w is not None:
                    w = da.from_array(dataset.w, chunks=(chunk, ))
                else:
                    w = None

                m = dxgb.DaskDMatrix(client, data=X, label=y, weight=w)
                history = dxgb.train(client,
                                     params=params,
                                     dtrain=m,
                                     num_boost_round=num_rounds,
                                     evals=[(m, 'train')])['history']
                note(history)
                assert tm.non_increasing(history['train'][dataset.metric])
コード例 #6
0
    def test_dask_dataframe(self):
        with LocalCUDACluster() as cluster:
            with Client(cluster) as client:
                import cupy
                X, y = generate_array()

                X = dd.from_dask_array(X)
                y = dd.from_dask_array(y)

                X = X.map_partitions(cudf.from_pandas)
                y = y.map_partitions(cudf.from_pandas)

                dtrain = dxgb.DaskDMatrix(client, X, y)
                out = dxgb.train(client, {'tree_method': 'gpu_hist'},
                                 dtrain=dtrain,
                                 evals=[(dtrain, 'X')],
                                 num_boost_round=2)

                assert isinstance(out['booster'], dxgb.Booster)
                assert len(out['history']['X']['rmse']) == 2

                predictions = dxgb.predict(client, out, dtrain).compute()
                assert isinstance(predictions, np.ndarray)

                series_predictions = dxgb.inplace_predict(client, out, X)
                assert isinstance(series_predictions, dd.Series)
                series_predictions = series_predictions.compute()

                single_node = out['booster'].predict(
                    xgboost.DMatrix(X.compute()))

                cupy.testing.assert_allclose(single_node, predictions)
                cupy.testing.assert_allclose(single_node, series_predictions)
コード例 #7
0
    def test_empty_dmatrix(self):
        def _check_outputs(out, predictions):
            assert isinstance(out['booster'], dxgb.Booster)
            assert len(out['history']['validation']['rmse']) == 2
            assert isinstance(predictions, np.ndarray)
            assert predictions.shape[0] == 1

        parameters = {
            'tree_method': 'gpu_hist',
            'verbosity': 3,
            'debug_synchronize': True
        }

        with LocalCUDACluster() as cluster:
            with Client(cluster) as client:
                kRows, kCols = 1, 97
                X = dd.from_array(np.random.randn(kRows, kCols))
                y = dd.from_array(np.random.rand(kRows))
                dtrain = dxgb.DaskDMatrix(client, X, y)

                out = dxgb.train(client,
                                 parameters,
                                 dtrain=dtrain,
                                 evals=[(dtrain, 'validation')],
                                 num_boost_round=2)
                predictions = dxgb.predict(client=client,
                                           model=out,
                                           data=dtrain).compute()
                _check_outputs(out, predictions)

                # train has more rows than evals
                valid = dtrain
                kRows += 1
                X = dd.from_array(np.random.randn(kRows, kCols))
                y = dd.from_array(np.random.rand(kRows))
                dtrain = dxgb.DaskDMatrix(client, X, y)

                out = dxgb.train(client,
                                 parameters,
                                 dtrain=dtrain,
                                 evals=[(valid, 'validation')],
                                 num_boost_round=2)
                predictions = dxgb.predict(client=client,
                                           model=out,
                                           data=valid).compute()
                _check_outputs(out, predictions)
コード例 #8
0
    def test_dask_dataframe(self):
        with LocalCUDACluster() as cluster:
            with Client(cluster) as client:
                import cupy as cp
                cp.cuda.runtime.setDevice(0)
                X, y = generate_array()

                X = dd.from_dask_array(X)
                y = dd.from_dask_array(y)

                X = X.map_partitions(cudf.from_pandas)
                y = y.map_partitions(cudf.from_pandas)

                dtrain = dxgb.DaskDMatrix(client, X, y)
                out = dxgb.train(client, {
                    'tree_method': 'gpu_hist',
                    'debug_synchronize': True
                },
                                 dtrain=dtrain,
                                 evals=[(dtrain, 'X')],
                                 num_boost_round=4)

                assert isinstance(out['booster'], dxgb.Booster)
                assert len(out['history']['X']['rmse']) == 4

                predictions = dxgb.predict(client, out, dtrain).compute()
                assert isinstance(predictions, np.ndarray)

                series_predictions = dxgb.inplace_predict(client, out, X)
                assert isinstance(series_predictions, dd.Series)
                series_predictions = series_predictions.compute()

                single_node = out['booster'].predict(
                    xgboost.DMatrix(X.compute()))

                cp.testing.assert_allclose(single_node, predictions)
                np.testing.assert_allclose(single_node,
                                           series_predictions.to_array())

                predt = dxgb.predict(client, out, X)
                assert isinstance(predt, dd.Series)

                def is_df(part):
                    assert isinstance(part, cudf.DataFrame), part
                    return part

                predt.map_partitions(is_df,
                                     meta=dd.utils.make_meta(
                                         {'prediction': 'f4'}))

                cp.testing.assert_allclose(predt.values.compute(), single_node)
コード例 #9
0
def test_dask_dataframe(client):
    X, y = generate_array()

    X = dd.from_dask_array(X)
    y = dd.from_dask_array(y)

    X = X.map_partitions(cudf.from_pandas)
    y = y.map_partitions(cudf.from_pandas)

    dtrain = dxgb.DaskDMatrix(client, X, y)
    out = dxgb.train(client, {'tree_method': 'gpu_hist'},
                     dtrain=dtrain,
                     evals=[(dtrain, 'X')],
                     num_boost_round=2)

    assert isinstance(out['booster'], dxgb.Booster)
    assert len(out['history']['X']['rmse']) == 2
コード例 #10
0
    def test_dask_dataframe(self):
        with LocalCUDACluster() as cluster:
            with Client(cluster) as client:
                X, y = generate_array()

                X = dd.from_dask_array(X)
                y = dd.from_dask_array(y)

                X = X.map_partitions(cudf.from_pandas)
                y = y.map_partitions(cudf.from_pandas)

                dtrain = dxgb.DaskDMatrix(client, X, y)
                out = dxgb.train(client, {'tree_method': 'gpu_hist'},
                                 dtrain=dtrain,
                                 evals=[(dtrain, 'X')],
                                 num_boost_round=2)

                assert isinstance(out['booster'], dxgb.Booster)
                assert len(out['history']['X']['rmse']) == 2

                predictions = dxgb.predict(client, out, dtrain).compute()
                assert isinstance(predictions, np.ndarray)