def main(): enter_debug() is_net3 = False with open('task.train.json','r') as fin: cfgs = json.load(fin) load_step = cfgs['load_step'] net_name = cfgs['net_name'] if net_name == 'SRNet3': is_net3 = True else: is_net3 = False if is_net3: net = nets.SRNet3(filenames=['data.sino8x.json', 'net.srnet1.json'], batch_size=2, low_shape=[16, 80], high_shape=[128, 640], nb_down_sample=2, load_step=load_step) else: net = nets.SRNet4(filenames=['data.sino8x.json', 'net.srnet1.json'], batch_size=2, low_shape=[16, 80], high_shape=[128, 640], nb_down_sample=2, load_step=load_step) # net = nets.SRNet3(filenames=['data.sino8x.json', 'net.srnet1.json'], load_step=-1) net.init() # with datasets.SinoShep(filenames='data.sino8x.json') as dataset: # ss = dataset.sample() ss = np.load('to_sr.npz') nb_images = ss['data0'].shape[0] srs = [] its = [] for i in tqdm(range(nb_images//2)): # if is_net3: # feed = ss # else: feed = { 'data3': ss['data3'][2*i:2*i+2, :, :, :], 'data': ss['data2'][2*i:2*i+2, :, :, :], 'data2': ss['data2'][2*i:2*i+2, :, :, :], 'data1': ss['data1'][2*i:2*i+2, :, :, :], 'data0': ss['data0'][2*i:2*i+2, :, :, :], 'label': ss['data0'][2*i:2*i+2, :, :, :]} pred = net.predict(feed) srs.append(pred['inference']) its.append(pred['interp']) print(pred['inference'].shape) pred_sr = np.concatenate(srs, axis=0) pred_it = np.concatenate(its, axis=0) # pred = net.predict(ss) np.save('sr.npy', pred_sr) np.save('it.npy', pred_it)
matplotlib.use('agg') import matplotlib.pyplot as plt from xlearn.dataset.mnist import MNISTImage, MNIST2 from xlearn.dataset.sinogram import Sinograms from xlearn.dataset.flickr import Flickr25k from xlearn.nets.super_resolution import SRNetInterp, SRSimple, SRF3D, SRClassic from xlearn.utils.general import with_config, empty_list, enter_debug from xlearn.utils.image import subplot_images c = dict() c['is_cl'] = False enter_debug() def init(): if c['net'] is not None: net = define_net() else: net = None if c['dataset'] is not None: dataset = define_dataset() else: dataset = None return net, dataset def define_dataset():
def xln(cfg, debug): if debug: print("ENTER DEBUG MODE") enter_debug()
def xln(config, cfg, debug): config.config = cfg config.load() if debug: print("ENTER DEBUG MODE") enter_debug()