def get_sentiment(testtxt): # 情感分析 example 1 xm = XmNLP(testtxt) if xm.sentiment() < 0.2: return 0 elif xm.sentiment() < 0.4: return 1 elif xm.sentiment() < 0.6: return 2 elif xm.sentiment() < 0.8: return 3 else: return 4
def get(self, text): xm = XmNLP(text) time_stamp = str(int(time.time())) data = get_tc_res(text, time_stamp) result = {'polar': 0, 'confd': 0, 'sentiment': 0} result['sentiment'] = xm.sentiment() if data['polar'] == 0: result['polar'] = 1 else: result['polar'] = data['polar'] # result['polar'] = data['polar'] if data['polar'] == 0 else 1 result['confd'] = data['confd'] return jsonify(result)
情感计算 / naive bayes / """ print(descr) doc = """真伤心""" doc2 = """天气太好了,我们去钓鱼吧""" print('\n++++++++++++++++++++++++ usage 1 ++++++++++++++++++++++++\n') """ 1. 使用类来进行操作 """ from xmnlp import XmNLP xm = XmNLP(doc, stopword=True) print('Text: ', doc) print('Score: ', xm.sentiment()) print('Text: ', doc2) print('Score: ', xm.sentiment(doc2)) print('\n++++++++++++++++++++++++ usage 2 ++++++++++++++++++++++++\n') import xmnlp print('Text: ', doc) print('Score: ', xmnlp.sentiment(doc)) print('Text: ', doc2) print('Score: ', xmnlp.sentiment(doc2))