def transduce(self, expr_seq: ExpressionSequence) -> ExpressionSequence: """ transduce the sequence Args: expr_seq: expression sequence or list of expression sequences (where each inner list will be concatenated) Returns: expression sequence """ Wq, Wk, Wv, Wo = [ dy.parameter(x) for x in (self.pWq, self.pWk, self.pWv, self.pWo) ] bq, bk, bv, bo = [ dy.parameter(x) for x in (self.pbq, self.pbk, self.pbv, self.pbo) ] # Start with a [(length, model_size) x batch] tensor x = expr_seq.as_transposed_tensor() x_len = x.dim()[0][0] x_batch = x.dim()[1] # Get the query key and value vectors # TODO: do we need bias broadcasting in DyNet? # q = dy.affine_transform([bq, x, Wq]) # k = dy.affine_transform([bk, x, Wk]) # v = dy.affine_transform([bv, x, Wv]) q = bq + x * Wq k = bk + x * Wk v = bv + x * Wv # Split to batches [(length, head_dim) x batch * num_heads] tensor q, k, v = [ dy.reshape(x, (x_len, self.head_dim), batch_size=x_batch * self.num_heads) for x in (q, k, v) ] # Do scaled dot product [(length, length) x batch * num_heads], rows are queries, columns are keys attn_score = q * dy.transpose(k) / sqrt(self.head_dim) if expr_seq.mask is not None: mask = dy.inputTensor(np.repeat( expr_seq.mask.np_arr, self.num_heads, axis=0).transpose(), batched=True) * -1e10 attn_score = attn_score + mask attn_prob = dy.softmax(attn_score, d=1) # Reduce using attention and resize to match [(length, model_size) x batch] o = dy.reshape(attn_prob * v, (x_len, self.input_dim), batch_size=x_batch) # Final transformation # o = dy.affine_transform([bo, attn_prob * v, Wo]) o = bo + o * Wo expr_seq = ExpressionSequence(expr_transposed_tensor=o, mask=expr_seq.mask) self._final_states = [FinalTransducerState(expr_seq[-1], None)] return expr_seq
def transduce(self, es: expression_seqs.ExpressionSequence) -> expression_seqs.ExpressionSequence: mask = es.mask sent_len = len(es) es_expr = es.as_transposed_tensor() batch_size = es_expr.dim()[1] es_chn = dy.reshape(es_expr, (sent_len, self.freq_dim, self.chn_dim), batch_size=batch_size) h_out = {} for direction in ["fwd", "bwd"]: # input convolutions gates_xt_bias = dy.conv2d_bias(es_chn, dy.parameter(self.params["x2all_" + direction]), dy.parameter(self.params["b_" + direction]), stride=(1, 1), is_valid=False) gates_xt_bias_list = [dy.pick_range(gates_xt_bias, i, i + 1) for i in range(sent_len)] h = [] c = [] for input_pos in range(sent_len): directional_pos = input_pos if direction == "fwd" else sent_len - input_pos - 1 gates_t = gates_xt_bias_list[directional_pos] if input_pos > 0: # recurrent convolutions gates_h_t = dy.conv2d(h[-1], dy.parameter(self.params["h2all_" + direction]), stride=(1, 1), is_valid=False) gates_t += gates_h_t # standard LSTM logic if len(c) == 0: c_tm1 = dy.zeros((self.freq_dim * self.num_filters,), batch_size=batch_size) else: c_tm1 = c[-1] gates_t_reshaped = dy.reshape(gates_t, (4 * self.freq_dim * self.num_filters,), batch_size=batch_size) c_t = dy.reshape(dy.vanilla_lstm_c(c_tm1, gates_t_reshaped), (self.freq_dim * self.num_filters,), batch_size=batch_size) h_t = dy.vanilla_lstm_h(c_t, gates_t_reshaped) h_t = dy.reshape(h_t, (1, self.freq_dim, self.num_filters,), batch_size=batch_size) if mask is None or np.isclose(np.sum(mask.np_arr[:, input_pos:input_pos + 1]), 0.0): c.append(c_t) h.append(h_t) else: c.append( mask.cmult_by_timestep_expr(c_t, input_pos, True) + mask.cmult_by_timestep_expr(c[-1], input_pos, False)) h.append( mask.cmult_by_timestep_expr(h_t, input_pos, True) + mask.cmult_by_timestep_expr(h[-1], input_pos, False)) h_out[direction] = h ret_expr = [] for state_i in range(len(h_out["fwd"])): state_fwd = h_out["fwd"][state_i] state_bwd = h_out["bwd"][-1 - state_i] output_dim = (state_fwd.dim()[0][1] * state_fwd.dim()[0][2],) fwd_reshape = dy.reshape(state_fwd, output_dim, batch_size=batch_size) bwd_reshape = dy.reshape(state_bwd, output_dim, batch_size=batch_size) ret_expr.append(dy.concatenate([fwd_reshape, bwd_reshape], d=0 if self.reshape_output else 2)) return expression_seqs.ExpressionSequence(expr_list=ret_expr, mask=mask) # TODO: implement get_final_states()
def transduce(self, x: expression_seqs.ExpressionSequence) -> expression_seqs.ExpressionSequence: x_T = x.as_transposed_tensor() scores = x_T * dy.parameter(self.W) if x.mask is not None: scores = x.mask.add_to_tensor_expr(scores, multiplicator=-100.0, time_first=True) if self.pos_enc_max: seq_len = x_T.dim()[0][0] pos_enc = self.pos_enc[:seq_len,:] scores = dy.cmult(scores, dy.inputTensor(pos_enc)) attention = dy.softmax(scores) output_expr = x.as_tensor() * attention return expression_seqs.ExpressionSequence(expr_tensor=output_expr, mask=None)
def transduce( self, x: expression_seqs.ExpressionSequence ) -> expression_seqs.ExpressionSequence: expr = x.as_transposed_tensor() batch_size, hidden_dim, seq_len = expr.size() expr = expr.view((batch_size, self.in_channels, hidden_dim // self.in_channels, seq_len)) expr = self.cnn_layer(expr) if self.use_pooling: expr = self.pooling_layer(expr) expr = self.activation_fct(expr) batch_size, out_chn, out_h, seq_len = expr.size() expr = expr.view((batch_size, out_chn * out_h, seq_len)) output_seq = expression_seqs.ExpressionSequence( expr_transposed_tensor=expr, mask=x.mask.lin_subsampled(trg_len=seq_len) if x.mask else None) self._final_states = [transducers.FinalTransducerState(output_seq[-1])] return output_seq