コード例 #1
0
ファイル: test_decoding.py プロジェクト: qiangzhongwork/xnmt
    def setUp(self):
        layer_dim = 512
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                trg_embed_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="model.decoder.rnn"),
                transform=NonLinear(input_dim=layer_dim * 2,
                                    output_dim=layer_dim),
                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        self.model.set_train(False)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))
コード例 #2
0
ファイル: test_encoder.py プロジェクト: msperber/xnmt
 def test_py_lstm_encoder_len(self):
     layer_dim = 512
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
         encoder=PyramidalLSTMSeqTransducer(input_dim=layer_dim,
                                            hidden_dim=layer_dim,
                                            layers=3),
         attender=MlpAttender(input_dim=layer_dim,
                              state_dim=layer_dim,
                              hidden_dim=layer_dim),
         trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
         decoder=MlpSoftmaxDecoder(input_dim=layer_dim,
                                   lstm_dim=layer_dim,
                                   mlp_hidden_dim=layer_dim,
                                   trg_embed_dim=layer_dim,
                                   vocab_size=100),
     )
     self.set_train(True)
     for sent_i in range(10):
         dy.renew_cg()
         src = self.src_data[sent_i].get_padded_sent(
             Vocab.ES, 4 - (len(self.src_data[sent_i]) % 4))
         self.start_sent(src)
         embeddings = model.src_embedder.embed_sent(src)
         encodings = model.encoder(embeddings)
         self.assertEqual(int(math.ceil(len(embeddings) / float(4))),
                          len(encodings))
コード例 #3
0
    def setUp(self):
        xnmt.events.clear()
        self.model_context = ModelContext()
        self.model_context.dynet_param_collection = PersistentParamCollection(
            "some_file", 1)
        self.model = DefaultTranslator(
            src_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.model_context),
            attender=MlpAttender(self.model_context),
            trg_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.model_context,
                                      vocab_size=100,
                                      bridge=CopyBridge(self.model_context,
                                                        dec_layers=1)),
        )
        self.model.initialize_training_strategy(TrainingStrategy())
        self.model.set_train(False)
        self.model.initialize_generator()

        self.training_corpus = BilingualTrainingCorpus(
            train_src="examples/data/head.ja",
            train_trg="examples/data/head.en",
            dev_src="examples/data/head.ja",
            dev_trg="examples/data/head.en")
        self.corpus_parser = BilingualCorpusParser(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            training_corpus=self.training_corpus)
コード例 #4
0
 def test_loss_model1(self):
     layer_dim = 512
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
         encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                     hidden_dim=layer_dim),
         attender=MlpAttender(input_dim=layer_dim,
                              state_dim=layer_dim,
                              hidden_dim=layer_dim),
         trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
         decoder=MlpSoftmaxDecoder(input_dim=layer_dim,
                                   trg_embed_dim=layer_dim,
                                   rnn_layer=UniLSTMSeqTransducer(
                                       input_dim=layer_dim,
                                       hidden_dim=layer_dim,
                                       decoder_input_dim=layer_dim,
                                       yaml_path="model.decoder.rnn_layer"),
                                   mlp_layer=MLP(
                                       input_dim=layer_dim,
                                       hidden_dim=layer_dim,
                                       decoder_rnn_dim=layer_dim,
                                       vocab_size=100,
                                       yaml_path="model.decoder.rnn_layer"),
                                   bridge=CopyBridge(dec_dim=layer_dim,
                                                     dec_layers=1)),
     )
     model.set_train(False)
     self.assert_single_loss_equals_batch_loss(model)
コード例 #5
0
ファイル: test_encoder.py プロジェクト: xxcharles/xnmt
    def test_py_lstm_mask(self):
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            encoder=PyramidalLSTMSeqTransducer(self.exp_global, layers=1),
            attender=MlpAttender(self.exp_global),
            trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.exp_global, vocab_size=100),
        )

        batcher = xnmt.batcher.TrgBatcher(batch_size=3)
        train_src, _ = \
          batcher.pack(self.src_data, self.trg_data)

        self.set_train(True)
        for sent_i in range(3):
            dy.renew_cg()
            src = train_src[sent_i]
            self.start_sent(src)
            embeddings = model.src_embedder.embed_sent(src)
            encodings = model.encoder(embeddings)
            if train_src[sent_i].mask is None:
                assert encodings.mask is None
            else:
                np.testing.assert_array_almost_equal(
                    train_src[sent_i].mask.np_arr, encodings.mask.np_arr)
コード例 #6
0
ファイル: test_decoding.py プロジェクト: msperber/xnmt
    def setUp(self):
        layer_dim = 512
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=MlpSoftmaxDecoder(input_dim=layer_dim,
                                      lstm_dim=layer_dim,
                                      mlp_hidden_dim=layer_dim,
                                      trg_embed_dim=layer_dim,
                                      vocab_size=100,
                                      bridge=CopyBridge(dec_dim=layer_dim,
                                                        dec_layers=1)),
        )
        self.model.set_train(False)
        self.model.initialize_generator()

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))
コード例 #7
0
    def setUp(self):
        xnmt.events.clear()
        self.exp_global = ExpGlobal(
            dynet_param_collection=PersistentParamCollection("some_file", 1))
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(exp_global=self.exp_global),
            attender=MlpAttender(exp_global=self.exp_global),
            trg_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        self.model.set_train(False)
        self.model.initialize_generator(beam=1)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))
コード例 #8
0
ファイル: test_decoding.py プロジェクト: pmichel31415/xnmt
class TestForcedDecodingOutputs(unittest.TestCase):
    def assertItemsEqual(self, l1, l2):
        self.assertEqual(len(l1), len(l2))
        for i in range(len(l1)):
            self.assertEqual(l1[i], l2[i])

    def setUp(self):
        layer_dim = 512
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=MlpSoftmaxDecoder(input_dim=layer_dim,
                                      trg_embed_dim=layer_dim,
                                      rnn_layer=UniLSTMSeqTransducer(
                                          input_dim=layer_dim,
                                          hidden_dim=layer_dim,
                                          decoder_input_dim=layer_dim,
                                          yaml_path="model.decoder.rnn_layer"),
                                      mlp_layer=MLP(
                                          input_dim=layer_dim,
                                          hidden_dim=layer_dim,
                                          decoder_rnn_dim=layer_dim,
                                          vocab_size=100,
                                          yaml_path="model.decoder.rnn_layer"),
                                      bridge=CopyBridge(dec_dim=layer_dim,
                                                        dec_layers=1)),
        )
        self.model.set_train(False)
        self.model.initialize_generator()

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))

        self.search = GreedySearch()

    def assert_forced_decoding(self, sent_id):
        dy.renew_cg()
        outputs = self.model.generate_output(
            self.src_data[sent_id],
            sent_id,
            self.search,
            forced_trg_ids=self.trg_data[sent_id])
        self.assertItemsEqual(self.trg_data[sent_id], outputs[0].actions)

    def test_forced_decoding(self):
        for i in range(1):
            self.assert_forced_decoding(sent_id=i)
コード例 #9
0
 def test_loss_model1(self):
     model = DefaultTranslator(
         src_embedder=SimpleWordEmbedder(self.model_context,
                                         vocab_size=100),
         encoder=BiLSTMSeqTransducer(self.model_context),
         attender=MlpAttender(self.model_context),
         trg_embedder=SimpleWordEmbedder(self.model_context,
                                         vocab_size=100),
         decoder=MlpSoftmaxDecoder(self.model_context, vocab_size=100),
     )
     model.set_train(False)
     self.assert_single_loss_equals_batch_loss(model)
コード例 #10
0
 def test_loss_model2(self):
     model = DefaultTranslator(
         src_embedder=SimpleWordEmbedder(self.model_context,
                                         vocab_size=100),
         encoder=PyramidalLSTMSeqTransducer(self.model_context, layers=3),
         attender=MlpAttender(self.model_context),
         trg_embedder=SimpleWordEmbedder(self.model_context,
                                         vocab_size=100),
         decoder=MlpSoftmaxDecoder(self.model_context, vocab_size=100),
     )
     model.set_train(False)
     self.assert_single_loss_equals_batch_loss(model, pad_src_to_multiple=4)
コード例 #11
0
class TestGreedyVsBeam(unittest.TestCase):
    """
  Test if greedy search produces same output as beam search with beam 1.
  """
    def setUp(self):
        layer_dim = 512
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                trg_embed_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="model.decoder.rnn"),
                transform=NonLinear(input_dim=layer_dim * 2,
                                    output_dim=layer_dim),
                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        self.model.set_train(False)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))

    def test_greedy_vs_beam(self):
        dy.renew_cg()
        outputs = self.model.generate(
            xnmt.batcher.mark_as_batch([self.src_data[0]]), [0],
            BeamSearch(beam_size=1),
            forced_trg_ids=xnmt.batcher.mark_as_batch([self.trg_data[0]]))
        output_score1 = outputs[0].score

        dy.renew_cg()
        outputs = self.model.generate(
            xnmt.batcher.mark_as_batch([self.src_data[0]]), [0],
            GreedySearch(),
            forced_trg_ids=xnmt.batcher.mark_as_batch([self.trg_data[0]]))
        output_score2 = outputs[0].score

        self.assertAlmostEqual(output_score1, output_score2)
コード例 #12
0
class TestGreedyVsBeam(unittest.TestCase):
    """
  Test if greedy search produces same output as beam search with beam 1.
  """
    def setUp(self):
        xnmt.events.clear()
        self.model_context = ModelContext()
        self.model_context.dynet_param_collection = PersistentParamCollection(
            "some_file", 1)
        self.model = DefaultTranslator(
            src_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.model_context),
            attender=MlpAttender(self.model_context),
            trg_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.model_context,
                                      vocab_size=100,
                                      bridge=CopyBridge(self.model_context,
                                                        dec_layers=1)),
        )
        self.model.initialize_training_strategy(TrainingStrategy())
        self.model.set_train(False)

        self.training_corpus = BilingualTrainingCorpus(
            train_src="examples/data/head.ja",
            train_trg="examples/data/head.en",
            dev_src="examples/data/head.ja",
            dev_trg="examples/data/head.en")
        self.corpus_parser = BilingualCorpusParser(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            training_corpus=self.training_corpus)

    def test_greedy_vs_beam(self):
        dy.renew_cg()
        self.model.initialize_generator(beam=1)
        outputs = self.model.generate_output(
            self.training_corpus.train_src_data[0],
            0,
            forced_trg_ids=self.training_corpus.train_trg_data[0])
        output_score1 = outputs[0].score

        dy.renew_cg()
        self.model.initialize_generator()
        outputs = self.model.generate_output(
            self.training_corpus.train_src_data[0],
            0,
            forced_trg_ids=self.training_corpus.train_trg_data[0])
        output_score2 = outputs[0].score

        self.assertAlmostEqual(output_score1, output_score2)
コード例 #13
0
    def setUp(self):
        # Seeding
        numpy.random.seed(2)
        random.seed(2)
        layer_dim = 64
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.segment_composer = SumComposer()
        self.src_reader = CharFromWordTextReader()
        self.trg_reader = PlainTextReader()
        self.loss_calculator = AutoRegressiveMLELoss()
        self.segmenting_encoder = SegmentingSeqTransducer(
            segment_composer=self.segment_composer,
            final_transducer=BiLSTMSeqTransducer(input_dim=layer_dim,
                                                 hidden_dim=layer_dim),
        )

        self.model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=self.segmenting_encoder,
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="decoder"),
                transform=AuxNonLinear(input_dim=layer_dim,
                                       output_dim=layer_dim,
                                       aux_input_dim=layer_dim),
                scorer=Softmax(vocab_size=100, input_dim=layer_dim),
                trg_embed_dim=layer_dim,
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        self.model.set_train(True)

        self.layer_dim = layer_dim
        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))
        my_batcher = xnmt.batcher.TrgBatcher(batch_size=3,
                                             src_pad_token=1,
                                             trg_pad_token=2)
        self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
        dy.renew_cg(immediate_compute=True, check_validity=True)
コード例 #14
0
class TestForcedDecodingOutputs(unittest.TestCase):
    def assertItemsEqual(self, l1, l2):
        self.assertEqual(len(l1), len(l2))
        for i in range(len(l1)):
            self.assertEqual(l1[i], l2[i])

    def setUp(self):
        layer_dim = 512
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                trg_embed_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="model.decoder.rnn"),
                transform=NonLinear(input_dim=layer_dim * 2,
                                    output_dim=layer_dim),
                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        self.model.set_train(False)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))

    def assert_forced_decoding(self, sent_id):
        dy.renew_cg()
        outputs = self.model.generate(
            xnmt.batcher.mark_as_batch([self.src_data[sent_id]]), [sent_id],
            BeamSearch(),
            forced_trg_ids=xnmt.batcher.mark_as_batch([self.trg_data[sent_id]
                                                       ]))
        self.assertItemsEqual(self.trg_data[sent_id].words, outputs[0].actions)

    def test_forced_decoding(self):
        for i in range(1):
            self.assert_forced_decoding(sent_id=i)
コード例 #15
0
class TestFreeDecodingLoss(unittest.TestCase):

  def setUp(self):
    layer_dim = 512
    xnmt.events.clear()
    ParamManager.init_param_col()
    self.model = DefaultTranslator(
      src_reader=PlainTextReader(),
      trg_reader=PlainTextReader(),
      src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      encoder=BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim),
      attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
      trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      decoder=MlpSoftmaxDecoder(input_dim=layer_dim, lstm_dim=layer_dim, mlp_hidden_dim=layer_dim,
                                trg_embed_dim=layer_dim, vocab_size=100,
                                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
    )
    self.model.set_train(False)
    self.model.initialize_generator(beam=1)

    self.src_data = list(self.model.src_reader.read_sents("examples/data/head.ja"))
    self.trg_data = list(self.model.trg_reader.read_sents("examples/data/head.en"))

  def test_single(self):
    dy.renew_cg()
    self.model.initialize_generator(beam=1)
    outputs = self.model.generate_output(self.src_data[0], 0,
                                         forced_trg_ids=self.trg_data[0])
    dy.renew_cg()
    train_loss = self.model.calc_loss(src=self.src_data[0],
                                      trg=outputs[0].actions,
                                      loss_calculator=LossCalculator()).value()

    self.assertAlmostEqual(-outputs[0].score, train_loss, places=4)
コード例 #16
0
ファイル: test_decoding.py プロジェクト: qiangzhongwork/xnmt
class TestFreeDecodingLoss(unittest.TestCase):
    def setUp(self):
        layer_dim = 512
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                trg_embed_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="model.decoder.rnn"),
                transform=NonLinear(input_dim=layer_dim * 2,
                                    output_dim=layer_dim),
                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        self.model.set_train(False)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))

    def test_single(self):
        dy.renew_cg()
        outputs = self.model.generate(
            xnmt.batcher.mark_as_batch([self.src_data[0]]), [0],
            GreedySearch(),
            forced_trg_ids=xnmt.batcher.mark_as_batch([self.trg_data[0]]))
        output_score = outputs[0].score

        dy.renew_cg()
        train_loss = self.model.calc_loss(
            src=self.src_data[0],
            trg=outputs[0],
            loss_calculator=AutoRegressiveMLELoss()).value()

        self.assertAlmostEqual(-output_score, train_loss, places=5)
コード例 #17
0
  def test_py_lstm_mask(self):
    layer_dim = 512
    model = DefaultTranslator(
      src_reader=self.src_reader,
      trg_reader=self.trg_reader,
      src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      encoder=PyramidalLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, layers=1),
      attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
      trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                                trg_embed_dim=layer_dim,
                                rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="model.decoder.rnn"),
                                transform=NonLinear(input_dim=layer_dim*2, output_dim=layer_dim),
                                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
    )

    batcher = xnmt.batcher.TrgBatcher(batch_size=3)
    train_src, _ = \
      batcher.pack(self.src_data, self.trg_data)

    self.set_train(True)
    for sent_i in range(3):
      dy.renew_cg()
      src = train_src[sent_i]
      self.start_sent(src)
      embeddings = model.src_embedder.embed_sent(src)
      encodings = model.encoder.transduce(embeddings)
      if train_src[sent_i].mask is None:
        assert encodings.mask is None
      else:
        np.testing.assert_array_almost_equal(train_src[sent_i].mask.np_arr, encodings.mask.np_arr)
コード例 #18
0
 def test_train_dev_loss_equal(self):
   layer_dim = 512
   batcher = SrcBatcher(batch_size=5, break_ties_randomly=False)
   train_args = {}
   train_args['src_file'] = "examples/data/head.ja"
   train_args['trg_file'] = "examples/data/head.en"
   train_args['loss_calculator'] = AutoRegressiveMLELoss()
   train_args['model'] = DefaultTranslator(src_reader=PlainTextReader(),
                                           trg_reader=PlainTextReader(),
                                           src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
                                           encoder=BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim),
                                           attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim,
                                                                hidden_dim=layer_dim),
                                           trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
                                           decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                                                                     trg_embed_dim=layer_dim,
                                                                     rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                                                                                    hidden_dim=layer_dim,
                                                                                                    decoder_input_dim=layer_dim,
                                                                                                    yaml_path="model.decoder.rnn"),
                                                                     transform=NonLinear(input_dim=layer_dim*2, output_dim=layer_dim),
                                                                     scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                                                                     bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
                                           )
   train_args['dev_tasks'] = [LossEvalTask(model=train_args['model'],
                                           src_file="examples/data/head.ja",
                                           ref_file="examples/data/head.en",
                                           batcher=batcher)]
   train_args['trainer'] = DummyTrainer()
   train_args['batcher'] = batcher
   train_args['run_for_epochs'] = 1
   training_regimen = xnmt.training_regimen.SimpleTrainingRegimen(**train_args)
   training_regimen.run_training(save_fct = lambda: None)
   self.assertAlmostEqual(training_regimen.train_loss_tracker.epoch_loss.sum_factors() / training_regimen.train_loss_tracker.epoch_words,
                          training_regimen.dev_loss_tracker.dev_score.loss, places=5)
コード例 #19
0
ファイル: test_training.py プロジェクト: xxcharles/xnmt
 def test_loss_model2(self):
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
         encoder=PyramidalLSTMSeqTransducer(self.exp_global, layers=3),
         attender=MlpAttender(self.exp_global),
         trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
         decoder=MlpSoftmaxDecoder(self.exp_global,
                                   vocab_size=100,
                                   bridge=CopyBridge(
                                       exp_global=self.exp_global,
                                       dec_layers=1)),
     )
     model.set_train(False)
     self.assert_single_loss_equals_batch_loss(model, pad_src_to_multiple=4)
コード例 #20
0
class TestFreeDecodingLoss(unittest.TestCase):
    def setUp(self):
        xnmt.events.clear()
        self.model_context = ModelContext()
        self.model_context.dynet_param_collection = PersistentParamCollection(
            "some_file", 1)
        self.model = DefaultTranslator(
            src_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.model_context),
            attender=MlpAttender(self.model_context),
            trg_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.model_context,
                                      vocab_size=100,
                                      bridge=CopyBridge(self.model_context,
                                                        dec_layers=1)),
        )
        self.model.initialize_training_strategy(TrainingStrategy())
        self.model.set_train(False)
        self.model.initialize_generator()

        self.training_corpus = BilingualTrainingCorpus(
            train_src="examples/data/head.ja",
            train_trg="examples/data/head.en",
            dev_src="examples/data/head.ja",
            dev_trg="examples/data/head.en")
        self.corpus_parser = BilingualCorpusParser(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            training_corpus=self.training_corpus)

    def test_single(self):
        dy.renew_cg()
        self.model.initialize_generator()
        outputs = self.model.generate_output(
            self.training_corpus.train_src_data[0],
            0,
            forced_trg_ids=self.training_corpus.train_trg_data[0])
        output_score = outputs[0].score

        dy.renew_cg()
        train_loss = self.model.calc_loss(
            src=self.training_corpus.train_src_data[0],
            trg=outputs[0].actions).value()

        self.assertAlmostEqual(-output_score, train_loss, places=5)
コード例 #21
0
class TestForcedDecodingOutputs(unittest.TestCase):
    def assertItemsEqual(self, l1, l2):
        self.assertEqual(len(l1), len(l2))
        for i in range(len(l1)):
            self.assertEqual(l1[i], l2[i])

    def setUp(self):
        xnmt.events.clear()
        self.model_context = ModelContext()
        self.model_context.dynet_param_collection = PersistentParamCollection(
            "some_file", 1)
        self.model = DefaultTranslator(
            src_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(self.model_context),
            attender=MlpAttender(self.model_context),
            trg_embedder=SimpleWordEmbedder(self.model_context,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(self.model_context, vocab_size=100),
        )
        self.model.set_train(False)
        self.model.initialize_generator()

        self.training_corpus = BilingualTrainingCorpus(
            train_src="examples/data/head.ja",
            train_trg="examples/data/head.en",
            dev_src="examples/data/head.ja",
            dev_trg="examples/data/head.en")
        self.corpus_parser = BilingualCorpusParser(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            training_corpus=self.training_corpus)

    def assert_forced_decoding(self, sent_id):
        dy.renew_cg()
        outputs = self.model.generate_output(
            self.training_corpus.train_src_data[sent_id],
            sent_id,
            forced_trg_ids=self.training_corpus.train_trg_data[sent_id])
        self.assertItemsEqual(self.training_corpus.train_trg_data[sent_id],
                              outputs[0].actions)

    def test_forced_decoding(self):
        for i in range(1):
            self.assert_forced_decoding(sent_id=i)
コード例 #22
0
class TestForcedDecodingOutputs(unittest.TestCase):
    def assertItemsEqual(self, l1, l2):
        self.assertEqual(len(l1), len(l2))
        for i in range(len(l1)):
            self.assertEqual(l1[i], l2[i])

    def setUp(self):
        xnmt.events.clear()
        self.exp_global = ExpGlobal(
            dynet_param_collection=PersistentParamCollection("some_file", 1))
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(exp_global=self.exp_global),
            attender=MlpAttender(exp_global=self.exp_global),
            trg_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        self.model.set_train(False)
        self.model.initialize_generator(beam=1)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))

    def assert_forced_decoding(self, sent_id):
        dy.renew_cg()
        outputs = self.model.generate_output(
            self.src_data[sent_id],
            sent_id,
            forced_trg_ids=self.trg_data[sent_id])
        self.assertItemsEqual(self.trg_data[sent_id], outputs[0].actions)

    def test_forced_decoding(self):
        for i in range(1):
            self.assert_forced_decoding(sent_id=i)
コード例 #23
0
ファイル: test_encoder.py プロジェクト: nvog/xnmt
 def test_res_lstm_encoder_len(self):
     model = DefaultTranslator(
         src_embedder=SimpleWordEmbedder(self.model_context,
                                         vocab_size=100),
         encoder=ResidualLSTMSeqTransducer(self.model_context, layers=3),
         attender=MlpAttender(self.model_context),
         trg_embedder=SimpleWordEmbedder(self.model_context,
                                         vocab_size=100),
         decoder=MlpSoftmaxDecoder(self.model_context, vocab_size=100),
     )
     self.assert_in_out_len_equal(model)
コード例 #24
0
ファイル: test_encoder.py プロジェクト: xxcharles/xnmt
 def test_uni_lstm_encoder_len(self):
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
         encoder=UniLSTMSeqTransducer(self.exp_global),
         attender=MlpAttender(self.exp_global),
         trg_embedder=SimpleWordEmbedder(self.exp_global, vocab_size=100),
         decoder=MlpSoftmaxDecoder(self.exp_global, vocab_size=100),
     )
     self.assert_in_out_len_equal(model)
コード例 #25
0
 def test_loss_model4(self):
     layer_dim = 512
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
         encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                     hidden_dim=layer_dim),
         attender=DotAttender(),
         trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
         decoder=MlpSoftmaxDecoder(input_dim=layer_dim,
                                   lstm_dim=layer_dim,
                                   mlp_hidden_dim=layer_dim,
                                   trg_embed_dim=layer_dim,
                                   vocab_size=100,
                                   bridge=CopyBridge(dec_layers=1,
                                                     dec_dim=layer_dim)),
     )
     model.set_train(False)
     self.assert_single_loss_equals_batch_loss(model)
コード例 #26
0
 def test_loss_model2(self):
   layer_dim = 512
   model = DefaultTranslator(
     src_reader=self.src_reader,
     trg_reader=self.trg_reader,
     src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
     encoder=PyramidalLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, layers=3),
     attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
     trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
     decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                               trg_embed_dim=layer_dim,
                               rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                                              hidden_dim=layer_dim,
                                                              decoder_input_dim=layer_dim,
                                                              yaml_path="model.decoder.rnn"),
                               transform=NonLinear(input_dim=layer_dim*2, output_dim=layer_dim),
                               scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                               bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
   )
   model.set_train(False)
   self.assert_single_loss_equals_batch_loss(model, pad_src_to_multiple=4)
コード例 #27
0
 def test_overfitting(self):
     layer_dim = 16
     batcher = SrcBatcher(batch_size=10, break_ties_randomly=False)
     train_args = {}
     train_args['src_file'] = "examples/data/head.ja"
     train_args['trg_file'] = "examples/data/head.en"
     train_args['loss_calculator'] = MLELoss()
     train_args['model'] = DefaultTranslator(
         src_reader=PlainTextReader(),
         trg_reader=PlainTextReader(),
         src_embedder=SimpleWordEmbedder(vocab_size=100, emb_dim=layer_dim),
         encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                     hidden_dim=layer_dim),
         attender=MlpAttender(input_dim=layer_dim,
                              state_dim=layer_dim,
                              hidden_dim=layer_dim),
         trg_embedder=SimpleWordEmbedder(vocab_size=100, emb_dim=layer_dim),
         decoder=MlpSoftmaxDecoder(input_dim=layer_dim,
                                   trg_embed_dim=layer_dim,
                                   rnn_layer=UniLSTMSeqTransducer(
                                       input_dim=layer_dim,
                                       hidden_dim=layer_dim,
                                       decoder_input_dim=layer_dim,
                                       yaml_path="model.decoder.rnn_layer"),
                                   mlp_layer=MLP(
                                       input_dim=layer_dim,
                                       hidden_dim=layer_dim,
                                       decoder_rnn_dim=layer_dim,
                                       vocab_size=100,
                                       yaml_path="model.decoder.rnn_layer"),
                                   bridge=CopyBridge(dec_dim=layer_dim,
                                                     dec_layers=1)),
     )
     train_args['dev_tasks'] = [
         LossEvalTask(model=train_args['model'],
                      src_file="examples/data/head.ja",
                      ref_file="examples/data/head.en",
                      batcher=batcher)
     ]
     train_args['run_for_epochs'] = 1
     train_args['trainer'] = AdamTrainer(alpha=0.1)
     train_args['batcher'] = batcher
     training_regimen = xnmt.training_regimen.SimpleTrainingRegimen(
         **train_args)
     for _ in range(50):
         training_regimen.run_training(save_fct=lambda: None,
                                       update_weights=True)
     self.assertAlmostEqual(
         0.0,
         training_regimen.train_loss_tracker.epoch_loss.sum() /
         training_regimen.train_loss_tracker.epoch_words,
         places=2)
コード例 #28
0
class TestGreedyVsBeam(unittest.TestCase):
    """
  Test if greedy search produces same output as beam search with beam 1.
  """
    def setUp(self):
        xnmt.events.clear()
        self.exp_global = ExpGlobal(
            dynet_param_collection=PersistentParamCollection("some_file", 1))
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(exp_global=self.exp_global),
            attender=MlpAttender(exp_global=self.exp_global),
            trg_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        self.model.set_train(False)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))

    def test_greedy_vs_beam(self):
        dy.renew_cg()
        self.model.initialize_generator(beam=1)
        outputs = self.model.generate_output(self.src_data[0],
                                             0,
                                             forced_trg_ids=self.trg_data[0])
        output_score1 = outputs[0].score

        dy.renew_cg()
        self.model.initialize_generator()
        outputs = self.model.generate_output(self.src_data[0],
                                             0,
                                             forced_trg_ids=self.trg_data[0])
        output_score2 = outputs[0].score

        self.assertAlmostEqual(output_score1, output_score2)
コード例 #29
0
 def test_uni_lstm_encoder_len(self):
   layer_dim = 512
   model = DefaultTranslator(
     src_reader=self.src_reader,
     trg_reader=self.trg_reader,
     src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
     encoder=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim),
     attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
     trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
     decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                               trg_embed_dim=layer_dim,
                               rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="model.decoder.rnn"),
                               transform=NonLinear(input_dim=layer_dim*2, output_dim=layer_dim),
                               scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                               bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
   )
   self.assert_in_out_len_equal(model)
コード例 #30
0
ファイル: test_decoding.py プロジェクト: xxcharles/xnmt
class TestFreeDecodingLoss(unittest.TestCase):
    def setUp(self):
        xnmt.events.clear()
        self.exp_global = ExpGlobal(
            dynet_param_collection=PersistentParamCollection("some_file", 1))
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(),
            trg_reader=PlainTextReader(),
            src_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            encoder=BiLSTMSeqTransducer(exp_global=self.exp_global),
            attender=MlpAttender(exp_global=self.exp_global),
            trg_embedder=SimpleWordEmbedder(exp_global=self.exp_global,
                                            vocab_size=100),
            decoder=MlpSoftmaxDecoder(exp_global=self.exp_global,
                                      vocab_size=100,
                                      bridge=CopyBridge(
                                          exp_global=self.exp_global,
                                          dec_layers=1)),
        )
        self.model.set_train(False)
        self.model.initialize_generator()

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))

    def test_single(self):
        dy.renew_cg()
        self.model.initialize_generator()
        outputs = self.model.generate_output(self.src_data[0],
                                             0,
                                             forced_trg_ids=self.trg_data[0])
        output_score = outputs[0].score

        dy.renew_cg()
        train_loss = self.model.calc_loss(
            src=self.src_data[0],
            trg=outputs[0].actions,
            loss_calculator=LossCalculator()).value()

        self.assertAlmostEqual(-output_score, train_loss, places=5)