コード例 #1
0
 def setUpClass(cls):
     cls.nx = 10
     # do not change this here unless you fix also the tests cases
     cls.ny = 19
     cls.nz = 10
     cls.xmin = 1
     cls.xmax = 10
     cls.x = numpy.linspace(cls.xmin, cls.xmax, num=cls.nx)
     cls.y = cls.x.copy()
     cls.z = cls.x.copy()
     cls.data = numpy.random.rand(cls.nx)
     cls.gridder = xu.Gridder3D(cls.nx, cls.ny, cls.nz)
     cls.gridder(cls.x, cls.y, cls.z, cls.data)
コード例 #2
0
def gridmap(specfile, scannr, experiment, nx, ny, nz, **kwargs):
    """
    read ccd frames and grid them in reciprocal space
    angular coordinates are taken from the spec file

    **kwargs are passed to the rawmap function
    """

    qx, qy, qz, intensity = rawmap(specfile, scannr, experiment, **kwargs)

    # convert data to rectangular grid in reciprocal space
    gridder = xu.Gridder3D(nx, ny, nz)
    gridder(qx, qy, qz, intensity)

    return gridder.xaxis, gridder.yaxis, gridder.zaxis, gridder.data, gridder
コード例 #3
0
ファイル: merge3D_qspace.py プロジェクト: duprazm/bcdi
def gridmap(specfile, scan_nb, mydetector, region=None, myflatfield=None, myhotpixels=None, reload=0,
            previous_data=None, previous_mask=None, mysetup='ID01', myrocking_angle="outofplane",
            follow_bragg=0, myenergy=None, myoffsets=(0, 0, 0, 0, 0)):
    """
    Load the data, check for saturated pixels, interpolate on an orthogonal grid
    :param specfile:
    :param scan_nb:
    :param mydetector: "Eiger4M" or "Eiger2M" or "Maxipix"
    :param region: roi on the detector
    :param myflatfield: 2D array, flatfield correction for the detector
    :param myhotpixels: 2D array, detector hotpixels to be masked
    :param reload: 1 when you reload the data
    :param previous_data: when you reload the data
    :param previous_mask: when you reload the data
    :param mysetup: 'ID01' or 'SIXS' or 'CRISTAL', different data loading method
    :param myrocking_angle: name of the motor which is tilted during the rocking curve
    :param follow_bragg: for energy_scan, set to 1 if the detector is scanned to follow the Bragg peak (delta @ ID01)
    :param myenergy: energy in eV of the experiment, in case it is not in the spec file
    :param myoffsets: sample and detector offsets for xrayutilities
    :return:
    """
    global sixs_beta, nb_pixel_x, nb_pixel_y
    if region is None:
        if mydetector == "Eiger2M":
            region = [0, nb_pixel_y, 0, nb_pixel_x]
        elif mydetector == "Maxipix":
            region = [0, nb_pixel_y, 0, nb_pixel_x]
        elif mydetector == "Eiger4M":
            region = [0, nb_pixel_y, 0, nb_pixel_x]
        else:
            region = [0, nb_pixel_y, 0, nb_pixel_x]
    if mysetup == 'ID01':
        motor_names = specfile[str(scan_nb) + '.1'].motor_names  # positioners
        motor_positions = specfile[str(scan_nb) + '.1'].motor_positions  # positioners
        labels = specfile[str(scan_nb) + '.1'].labels  # motor scanned
        labels_data = specfile[str(scan_nb) + '.1'].data  # motor scanned
        chi = 0
        delta = motor_positions[motor_names.index('del')]
        nu = motor_positions[motor_names.index('nu')]
        if myrocking_angle == "outofplane":
            eta = labels_data[labels.index('eta'), :]
            phi = motor_positions[motor_names.index('phi')]
            myenergy = motor_positions[motor_names.index('nrj')]  # in kev
        elif myrocking_angle == "inplane":
            phi = labels_data[labels.index('phi'), :]
            eta = motor_positions[motor_names.index('eta')]
            myenergy = motor_positions[motor_names.index('nrj')]  # in kev
        elif myrocking_angle == "energy":
            myenergy = labels_data[labels.index('energy'), :]  # in kev
            if follow_bragg == 1:
                delta = labels_data[labels.index('del'), :]
                # TODO: understand why Qx is positive
            phi = motor_positions[motor_names.index('phi')]
            eta = motor_positions[motor_names.index('eta')]
        else:
            print("Error in rocking angle definition")
            sys.exit()
        myenergy = myenergy * 1000.0  # switch to eV
        if isinstance(myenergy, float) and myenergy < 0:
            print("Energy not correctly defined in spec file, default to 9keV")
            myenergy = 9000.0
    elif mysetup == 'SIXS':
        mydataset = nxsReady.DataSet(datadir + ccdfiletmp % scan_nb, ccdfiletmp % scan_nb, scan="SBS")
        img = mydataset.mfilm[1:, :, :]  # first frame is duplicated
        delta = mydataset.delta[1:].mean()  # not scanned
        gamma = mydataset.gamma[1:].mean()  # not scanned
        mu = mydataset.mu[1:]
    elif mysetup == 'CRISTAL':
        omega = specfile['a']['scan_data']['actuator_1_1'][:] / 1e6
        delta = specfile['a/CRISTAL/I06-C-C07__EX__DIF-DELTA__#1/raw_value'][:]
        nu = specfile['a/CRISTAL/I06-C-C07__EX__DIF-GAMMA__#1/raw_value'][:]
        maxpix_img = specfile['a']['scan_data']['data_04'][:]
    elif mysetup == 'P10':
        # TODO: find motors in specfile
        mu = []
        for index in range(25):  # header
            specfile.readline()
        for index, myline in enumerate(specfile, 0):
            myline = myline.strip()
            mycolumns = myline.split()
            if mycolumns[0] == '!':
                break
            mu.append(mycolumns[0])
        mu = np.asarray(mu, dtype=float)
        nb_img = len(mu)
        specfile.close()

    if reload == 0:
        if mydetector == "Eiger2M":
            counter = 'ei2minr'
            mymask = np.zeros((nb_pixel_y, nb_pixel_x))
        elif mydetector == "Maxipix":
            counter = 'mpx4inr'
            # counter = 'roi7'
            mymask = np.zeros((nb_pixel_y, nb_pixel_x))
        elif mydetector == "Eiger4M":
            mymask = np.zeros((nb_pixel_y, nb_pixel_x))
        else:
            counter = 'mpx4inr'
            mymask = np.zeros((nb_pixel_y, nb_pixel_x))

        if myflatfield is None:
            myflatfield = np.ones(mymask.shape)
        if myhotpixels is None:
            myhotpixels = np.zeros(mymask.shape)
        if mysetup == 'ID01':
            ccdn = labels_data[labels.index(counter), :]
            rawdata = np.zeros((len(ccdn), region[1] - region[0], region[3] - region[2]))
            for index in range(len(ccdn)):
                i = int(ccdn[index])
                e = fabio.open(ccdfiletmp % i)
                ccdraw = e.data
                ccdraw, mymask = remove_hotpixels(ccdraw, myhotpixels, mymask)
                if mydetector == "Eiger2M":
                    ccdraw, mymask = mask_eiger(ccdraw, mymask)
                elif mydetector == "Maxipix":
                    ccdraw, mymask = mask_maxipix(ccdraw, mymask)
                ccdraw = myflatfield * ccdraw
                ccd = xu.blockAverage2D(ccdraw, nav[0], nav[1], roi=region)
                rawdata[int(i - ccdn[0]), :, :] = ccd
        elif mysetup == 'SIXS':
            nb_img = img.shape[0]
            rawdata = np.zeros((nb_img, region[1] - region[0], region[3] - region[2]))
            for index in range(nb_img):
                ccdraw = img[index, :, :]  # first image is duplicated
                ccdraw, mymask = remove_hotpixels(ccdraw, myhotpixels, mymask)
                if mydetector == "Eiger2M":
                    ccdraw, mymask = mask_eiger(ccdraw, mymask)
                elif mydetector == "Maxipix":
                    ccdraw, mymask = mask_maxipix(ccdraw, mymask)
                ccdraw = myflatfield * ccdraw
                ccd = xu.blockAverage2D(ccdraw, nav[0], nav[1], roi=region)
                rawdata[index, :, :] = ccd
        elif mysetup == 'CRISTAL':
            nb_img = omega.shape[0]
            rawdata = np.zeros((nb_img, region[1] - region[0], region[3] - region[2]))
            for index in range(nb_img):
                ccdraw = maxpix_img[index, :, :]
                ccdraw, mymask = remove_hotpixels(ccdraw, myhotpixels, mymask)
                ccdraw, mymask = mask_maxipix(ccdraw, mymask)
                ccdraw = myflatfield * ccdraw
                ccd = xu.blockAverage2D(ccdraw, nav[0], nav[1], roi=region)
                rawdata[index, :, :] = ccd
        elif mysetup == 'P10':
            rawdata = np.zeros((nb_img, region[1] - region[0], region[3] - region[2]))
            for index in range(nb_img):
                h5file = h5py.File(ccdfiletmp % (index + 1), 'r')
                try:
                    ccdraw = h5file['entry']['data']['data'][:].sum(axis=0)
                except OSError:
                    print('hdf5plugin is not installed')
                    sys.exit()
                ccdraw, mymask = remove_hotpixels(ccdraw, myhotpixels, mymask)
                ccdraw, mymask = mask_eiger4m(ccdraw, mymask)
                ccdraw = myflatfield * ccdraw
                ccd = xu.blockAverage2D(ccdraw, nav[0], nav[1], roi=region)
                rawdata[index, :, :] = ccd

        mymask = mymask[region[0]:region[1], region[2]:region[3]]
        rawdata, mymask = check_pixels(rawdata, mymask, var_threshold=5, debugging=0)  # additional check for hotpixels
        numz, numy, numx = rawdata.shape
        rawmask3d = np.repeat(mymask[np.newaxis, :, :], numz, axis=0)
        rawmask3d[np.isnan(rawdata)] = 1
        rawdata[np.isnan(rawdata)] = 0
    else:
        rawmask3d = previous_mask
        rawdata = previous_data
        numz, numy, numx = rawdata.shape
    # transform scan angles to reciprocal space coordinates for all detector pixels
    if mysetup == 'ID01':
        myqx, myqy, myqz = hxrd.Ang2Q.area(eta, chi, phi, nu, delta, en=myenergy, delta=myoffsets)
        mygridder = xu.Gridder3D(numz, numy, numx)
        # convert mask to rectangular grid in reciprocal space
        mygridder(myqx, myqz, myqy, rawmask3d)
        mymask3d = np.copy(mygridder.data)
        # convert data to rectangular grid in reciprocal space
        mygridder(myqx, myqz, myqy, rawdata)
        return mygridder.xaxis, mygridder.yaxis, mygridder.zaxis, rawdata, mygridder.data, rawmask3d, mymask3d

    elif mysetup == 'SIXS':
        if myenergy is None:
            print('Defaulting energy to 8.5keV')
            myenergy = 8500
        myqx, myqy, myqz = hxrd.Ang2Q.area(sixs_beta, mu, sixs_beta, gamma, delta, en=myenergy, delta=myoffsets)
        mygridder = xu.Gridder3D(numz, numy, numx)
        # convert mask to rectangular grid in reciprocal space
        mygridder(myqx, myqz, myqy, rawmask3d)
        mymask3d = np.copy(mygridder.data)
        # convert data to rectangular grid in reciprocal space
        mygridder(myqx, myqz, myqy, rawdata)
        return mygridder.xaxis, mygridder.yaxis, mygridder.zaxis, rawdata, mygridder.data, rawmask3d, mymask3d

    elif mysetup == 'CRISTAL':
        # TODO: implement this for CRISTAL
        print('Gridder not yet implemented for CRISTAL setup')
        return 0, 0, 0, rawdata, 0, rawmask3d, 0
    elif mysetup == 'P10':
        # TODO: implement this for P10
        print('Gridder not yet implemented for P10 setup')
        return 0, 0, 0, rawdata, 0, rawmask3d, 0
    else:
        print('Wrong setup')
        sys.exit()
コード例 #4
0
    def processMap(self, **kwargs):
        """
        read ad frames and grid them in reciprocal space
        angular coordinates are taken from the spec file
    
        **kwargs are passed to the rawmap function
        """
        maxImageMem = self.appConfig.getMaxImageMemory()
        gridder = xu.Gridder3D(self.nx, self.ny, self.nz)
        gridder.KeepData(True)
        rangeBounds = self.dataSource.getRangeBounds()
        try:
            # repository version or xrayutilities > 1.0.6
            gridder.dataRange(rangeBounds[0], rangeBounds[1], rangeBounds[2],
                              rangeBounds[3], rangeBounds[4], rangeBounds[5],
                              True)
        except:
            # xrayutilities 1.0.6 and below
            gridder.dataRange((rangeBounds[0], rangeBounds[1]),
                              (rangeBounds[2], rangeBounds[3]),
                              (rangeBounds[4], rangeBounds[5]), True)

        imageToBeUsed = self.dataSource.getImageToBeUsed()
        progress = 0
        for scan in self.dataSource.getAvailableScans():

            if True in imageToBeUsed[scan]:
                imageSize = self.dataSource.getDetectorDimensions()[0] * \
                            self.dataSource.getDetectorDimensions()[1]
                numImages = len(imageToBeUsed[scan])
                if imageSize * 4 * numImages <= maxImageMem:
                    kwargs['mask'] = imageToBeUsed[scan]
                    qx, qy, qz, intensity = self.dataSource.rawmap((scan, ),
                                                                   **kwargs)

                    # convert data to rectangular grid in reciprocal space
                    gridder(qx, qy, qz, intensity)
                    progress += 100
                    if self.progressUpdater is not None:
                        self.progressUpdater(progress)
                else:
                    nPasses = int(imageSize * 4 * numImages / maxImageMem + 1)

                    for thisPass in range(nPasses):
                        imageToBeUsedInPass = np.array(imageToBeUsed[scan])
                        imageToBeUsedInPass[:int(thisPass * numImages /
                                                 nPasses)] = False
                        imageToBeUsedInPass[int((thisPass + 1) * numImages /
                                                nPasses):] = False

                        if True in imageToBeUsedInPass:
                            kwargs['mask'] = imageToBeUsedInPass
                            qx, qy, qz, intensity = \
                                self.dataSource.rawmap((scan,), **kwargs)
                            # convert data to rectangular grid in reciprocal space
                            try:
                                gridder(qx, qy, qz, intensity)

                                progress += 1.0 / nPasses * 100.0
                                if self.progressUpdater is not None:
                                    self.progressUpdater(progress)
                            except InputError as ex:
                                print("Wrong Input to gridder")
                                print("qx Size: " + str(qx.shape))
                                print("qy Size: " + str(qy.shape))
                                print("qz Size: " + str(qz.shape))
                                print("intensity Size: " +
                                      str(intensity.shape))
                                raise InputError(ex)
                        else:
                            progress += 1.0 / nPasses * 100.0
                            if self.progressUpdater is not None:
                                self.progressUpdater(progress)
            self.progressUpdater(100.0)
        return gridder.xaxis, gridder.yaxis, gridder.zaxis, gridder.data, gridder
コード例 #5
0
def gridmap(specfile,
            scan_nb,
            mydetector,
            region=None,
            myflatfield=None,
            myhotpixels=""):
    global offset, offset_chi, offset_eta, offset_phi, filtered_data, datadir
    if region is None:
        if mydetector == "Eiger2M":
            region = [0, 2164, 0, 1030]
        elif mydetector == "Maxipix":
            region = [0, 516, 0, 516]
    if mydetector == "Eiger2M":
        counter = 'ei2minr'
        mymask = np.zeros((2164, 1030))
    elif mydetector == "Maxipix":
        counter = 'mpx4inr'
        mymask = np.zeros((516, 516))
    else:
        sys.exit("Incorrect value for 'mydetector' parameter")
    if myhotpixels != "":
        print("Loading hotpixels array")
        hotpix_array = np.load(myhotpixels)
        npz_key = hotpix_array.keys()
        hotpix_array = hotpix_array[npz_key[0]]
        if len(hotpix_array.shape) == 3:  # 3D array
            hotpix_array = hotpix_array.sum(axis=0)
        hotpix_array[hotpix_array != 0] = -1
    if myflatfield is None:
        myflatfield = np.ones(mymask.shape)
    motor_names = specfile[str(scan_nb) + '.1'].motor_names  # positioners
    motor_positions = specfile[str(scan_nb) +
                               '.1'].motor_positions  # positioners
    labels = specfile[str(scan_nb) + '.1'].labels  # motor scanned
    labels_data = specfile[str(scan_nb) + '.1'].data  # motor scanned
    chi = offset_chi
    phi = offset_phi
    delta = motor_positions[motor_names.index('del')]
    nu = motor_positions[motor_names.index('nu')]
    eta = labels_data[labels.index('eta'), :] + offset_eta
    ccdn = labels_data[labels.index(counter), :]
    if filtered_data == 0:
        rawdata = np.zeros(
            (len(ccdn), region[1] - region[0], region[3] - region[2]))
        for index in range(len(ccdn)):
            i = int(ccdn[index])
            e = fabio.open(ccdfiletmp % i)
            ccdraw = e.data
            if myhotpixels != "":
                ccdraw, mymask = remove_hotpixels(ccdraw, hotpix_array, mymask)
            if mydetector == "Eiger2M":
                ccdraw, mymask = mask_eiger(ccdraw, mymask)
            elif mydetector == "Maxipix":
                ccdraw, mymask = mask_maxipix(ccdraw, mymask)
            ccdraw = myflatfield * ccdraw
            ccd = xu.blockAverage2D(ccdraw, nav[0], nav[1], roi=region)
            rawdata[int(i - ccdn[0]), :, :] = ccd
    else:
        print('Loading filtered data')
        myfile_path = filedialog.askopenfilename(initialdir=specdir,
                                                 title="Select 3D data",
                                                 filetypes=[("NPZ", "*.npz")])
        rawdata = np.load(myfile_path)['data']
        rawdata = rawdata[region[0]:region[1], region[2]:region[3]]
    mymask = mymask[region[0]:region[1], region[2]:region[3]]
    numz, numy, numx = rawdata.shape
    if numz != len(ccdn):
        print('Filtered data has not the same shape as raw data')
        sys.exit()
    rawmask3d = np.zeros((numz, region[1] - region[0], region[3] - region[2]))
    for index in range(numz):
        rawmask3d[index, :, :] = mymask
    # transform scan angles to reciprocal space coordinates for all detector pixels
    myqx, myqy, myqz = hxrd.Ang2Q.area(eta,
                                       chi,
                                       phi,
                                       nu,
                                       delta,
                                       delta=(0, 0, 0, offset, 0))
    mygridder = xu.Gridder3D(numz, numy, numx)
    # convert mask to rectangular grid in reciprocal space
    mygridder(myqx, myqz, myqy, rawmask3d)
    mymask3d = np.copy(mygridder.data)
    # convert data to rectangular grid in reciprocal space
    mygridder(myqx, myqz, myqy, rawdata)
    return mygridder.xaxis, mygridder.yaxis, mygridder.zaxis, rawdata, mygridder.data, rawmask3d, mymask3d