コード例 #1
0
ファイル: mountain.py プロジェクト: luzloujv/p19_newscripts
def plot_mountain_top(this_looper, core_list=None, r_inflection=None, r_mass=None):

    if core_list is None:
        core_list=np.unique(this_looper.tr.core_ids)

    ds = this_looper.load(this_looper.target_frame)
    xtra_energy.add_energies(ds)
    reload(mountain_top)
    #radius=1e-2
    radius=4/128
    radius = ds.arr(radius,'code_length')
    for core_id in core_list:
        peak = this_looper.targets[core_id].peak_location
        this_target = this_looper.targets[core_id]
        top1 = mountain_top.top(ds,peak, rhomin = this_target.min_density, peak_id=core_id, radius=radius)
        proj = ds.proj('density',0,center=top1.location,data_source=top1.region)
        pw = proj.to_pw()
        pw.set_cmap('density','Greys')
        #pw.annotate_clumps([master_clump]+master_clump.leaves)
        if top1.leaf['particle_index'].size > 10:
            p_size = 1
        else:
            p_size = 7
        pw.annotate_these_particles4(1.0,col='r',positions= top1.leaf['particle_position'], p_size=p_size)
        pw.zoom(0.5/radius.v)
        pw.set_axes_unit('code_length')

        pw.annotate_clumps([top1.leaf], plot_args={'color':'y'})


        if r_inflection is not None:
            RRR = r_inflection[core_id]
            pw.annotate_sphere( top1.location, RRR, circle_args={'color':'r'})

        if r_mass is not None:
            if core_id in r_mass:
                RRR = r_mass[core_id]
                pw.annotate_sphere( top1.location, RRR, circle_args={'color':'b'})
        print(pw.save('plots_to_sort/mountain_top_%s_c%04d'%(this_looper.sim_name, core_id)))
コード例 #2
0
def plot_phi(this_looper, core_list=None):
    if core_list is None:
        core_list = np.unique(this_looper.tr.core_ids)

    frame = this_looper.target_frame
    for core_id in core_list:
        print('Potential %s %d' % (this_looper.sim_name, core_id))
        save_prefix = 'plots_to_sort/%s_n%04d_c%04d' % (this_looper.sim_name,
                                                        frame, core_id)
        ds = this_looper.load(frame)
        xtra_energy.add_energies(ds)
        ms = trackage.mini_scrubber(this_looper.tr, core_id)
        c = nar([ms.mean_x[-1], ms.mean_y[-1], ms.mean_z[-1]])

        rsph = ds.arr(8.0 / 128, 'code_length')
        #rsph = ds.arr(2/128,'code_length')
        sp = ds.sphere(c, rsph)

        if 0:
            proj = ds.proj('grav_energy', 0, center=c, data_source=sp)
            pw = proj.to_pw(center=c)
            pw.zoom(32)
            pw.save(save_prefix)

        GE = np.abs(sp['grav_energy'])
        dv = np.abs(sp['cell_volume'])
        RR = sp['radius']
        r_sphere = sp['radius']
        DD = sp['density']

        ok = RR < 0.01

        fit = np.polyfit(np.log10(RR[ok]), np.log10(DD[ok]), 1)
        M = sp['cell_mass'].sum()
        G = 1620 / (4 * np.pi)
        coe = -1 / (8 * np.pi * G)
        power = 2 * fit[0] + 2
        phi_del_squ_analy = (coe * G**2 * M**2 * r_sphere**
                             (power)) / max(r_sphere)**(2 * fit[0] + 6)

        fig, ax = plt.subplots(1, 2)
        ax0 = ax[0]
        ax1 = ax[1]
        if 1:
            rbins = np.geomspace(r_sphere[r_sphere > 0].min(), r_sphere.max(),
                                 64)
            gbins = np.geomspace(GE[GE > 0].min(), GE.max(), 64)
            hist, xb, yb = np.histogram2d(r_sphere,
                                          GE,
                                          bins=[rbins, gbins],
                                          weights=dv)
            pch.helper(hist, xb, yb, ax=ax0, transpose=False)
        if 1:
            rbins = np.geomspace(r_sphere[r_sphere > 0].min(), r_sphere.max(),
                                 64)
            dbins = np.geomspace(DD[DD > 0].min(), DD.max(), 64)
            hist, xb, yb = np.histogram2d(r_sphere,
                                          DD,
                                          bins=[rbins, dbins],
                                          weights=dv)
            pch.helper(hist, xb, yb, ax=ax1, transpose=False)
        if 0:
            ax.scatter(sp['radius'], -sp['grav_energy'], c='r', s=0.1)
            #ax.set_xlim(sp['radius'].min(),sp['radius'].max())

        if 1:
            axt = ax0.twinx()
            sort = np.argsort(sp['radius'])
            rsort = sp['radius'][sort]
            GEdv = (GE * RR)[sort]
            tots = np.cumsum(GEdv)
            axt.plot(rsort, tots)

        ax0.plot(RR, np.abs(phi_del_squ_analy), c='k')
        ax1.plot(RR[ok], 10**(fit[0] * np.log10(RR[ok]) + fit[1]), c='r')
        axbonk(ax0,
               xscale='log',
               yscale='log',
               xlabel='r',
               ylabel='abs(grav_eng)')
        axbonk(ax1, xscale='log', yscale='log', xlabel='r', ylabel='density')
        fig.savefig(save_prefix + "grav_eng")
        continue
        ax.clear()
        bins = np.geomspace(GE[GE > 0].min(), GE.max(), 64)
        ax.hist(np.abs(sp['grav_energy']), bins=bins, histtype='step')
        axbonk(ax, xlabel='Grad Phi', ylabel='N', xscale='log', yscale='log')
        fig.savefig(save_prefix + "grad_phi_hist")

        min_ge = np.argmin(GE)
        x, y, z = sp['x'][min_ge], sp['y'][min_ge], sp['z'][min_ge]
        c = ds.arr([x, y, z], 'code_length')
        SSS = yt.SlicePlot(ds, 'x', 'grav_energy', center=c)
        SSS.annotate_sphere(center=c, radius=rsph)
        SSS.save(save_prefix)
        SSS = yt.SlicePlot(ds, 'x', 'kinetic_energy', center=c)
        #SSS.annotate_sphere(sp)
        SSS.save(save_prefix)
コード例 #3
0
    def run(self, core_list=None):
        this_looper = self.this_looper
        if core_list is None:
            core_list = np.unique(this_looper.tr.core_ids)

        frame = this_looper.target_frame
        ds = this_looper.load(frame)
        G = ds['GravitationalConstant'] / (4 * np.pi)
        xtra_energy.add_energies(ds)
        for core_id in core_list:
            print('Mass Edge %s %d' % (this_looper.sim_name, core_id))

            ms = trackage.mini_scrubber(this_looper.tr, core_id)
            c = nar([ms.mean_x[-1], ms.mean_y[-1], ms.mean_z[-1]])

            R_SPHERE = 4 / 128
            rsph = ds.arr(R_SPHERE, 'code_length')
            sp = ds.sphere(c, rsph)

            GE = np.abs(sp['grav_energy'])
            dv = np.abs(sp['cell_volume'])
            RR = sp['radius']
            DD = sp['density']

            R_KEEP = R_SPHERE  #self.rinflection[core_id]

            #get the zones in the sphere that are
            #within R_KEEP
            ok_fit = np.logical_and(RR < R_KEEP, GE > 0)

            rok = RR[ok_fit].v

            ORDER = np.argsort(rok)
            rho_o = DD[ok_fit][ORDER].v
            ge_o = GE[ok_fit][ORDER].v
            dv_o = dv[ok_fit][ORDER].v
            rr_o_full = RR[ok_fit][ORDER].v
            mass_r = (rho_o * dv_o).cumsum()
            enrg_r = (ge_o * dv_o).cumsum()

            rr_o = np.linspace(max([1 / 2048, rr_o_full.min()]),
                               rr_o_full.max(), 128)
            all_r, all_m = rr_o_full[1:], mass_r[1:]

            my_r = np.linspace(max([1 / 2048, all_r.min()]), all_r.max(), 1024)
            mbins = np.linspace(all_m.min(), all_m.max(), 128)
            thing, mask = np.unique(all_r, return_index=True)

            mfunc = interp1d(all_r[mask], all_m[mask])
            my_m = gaussian_filter(mfunc(my_r), 2)
            dm = (my_m[1:] - my_m[:-1])
            mm = 0.5 * (my_m[1:] + my_m[:-1])
            dr = (my_r[1:] - my_r[:-1])
            dm_dr = dm / dr
            rbins = 0.5 * (my_r[1:] + my_r[:-1])

            SWITCH = 2 * rbins * dm_dr / mm
            findit = np.logical_and(rbins > 0.01, SWITCH < 1)
            if findit.sum() > 0:
                ok = np.where(findit)[0][0]
            self.edge[core_id] = my_r[ok - 1]
コード例 #4
0
    def run(self, core_list=None):
        this_looper = self.this_looper
        if core_list is None:
            core_list = np.unique(this_looper.tr.core_ids)

        frame = this_looper.target_frame
        ds = this_looper.load(frame)
        G = ds['GravitationalConstant'] / (4 * np.pi)
        xtra_energy.add_energies(ds)
        for core_id in core_list:
            print('Potential %s %d' % (this_looper.sim_name, core_id))

            ms = trackage.mini_scrubber(this_looper.tr, core_id)
            c = nar([ms.mean_x[-1], ms.mean_y[-1], ms.mean_z[-1]])

            R_SPHERE = 8 / 128
            rsph = ds.arr(R_SPHERE, 'code_length')
            sp = ds.sphere(c, rsph)

            GE = np.abs(sp['grav_energy'])
            dv = np.abs(sp['cell_volume'])
            RR = sp['radius']

            #2d distribution of GE vs r

            gbins = np.geomspace(GE[GE > 0].min(), GE.max(), 65)
            rbins = np.geomspace(RR[RR > 0].min(), RR.max(), 67)
            r_cen = 0.5 * (rbins[1:] + rbins[:-1])  #we'll need this later.
            hist, xb, yb = np.histogram2d(RR,
                                          GE,
                                          bins=[rbins, gbins],
                                          weights=dv)

            #clear out annoying stragglers in the distribution.
            #any point that doesn't have any neighbors is eliminated.
            #h2 is the histogram to do math with.

            if 1:
                #h2 is the histogram.
                #we'll remove any stragglers.
                h2 = hist + 0
                shifter = np.zeros(nar(h2.shape) + 2)
                cuml = np.zeros(h2.shape)
                c_center = slice(1, -1)
                #hb is just "is h2 nonzero"
                #we'll slide this around to look for neighbors
                hb = (h2 > 0)
                shifter[c_center, c_center] = hb
                nx, ny = shifter.shape
                for i in [0, 1, 2]:
                    for j in [0, 1, 2]:
                        if i == 1 and j == 1:
                            continue
                        s1 = slice(i, nx - 2 + i)
                        s2 = slice(j, ny - 2 + j)
                        cuml += shifter[s1, s2]
                #kill points that don't have neighbors.
                h2 *= (cuml > 0)

            if 1:
                #Compute the upper bound of the histogram
                #smooth it
                #look for the point where the slope goes up.
                #but to avoid wiggles, it has to first come down a lot.

                #the upper bound of the distribution
                #compute upper_envelope
                y = np.arange(h2.shape[1])
                y2d = np.stack([y] * h2.shape[0])
                argmax = np.argmax(y2d * (h2 > 0), axis=1)
                upper_envelope = gbins[argmax]
                keepers = upper_envelope > 1

                #smooth for wiggles.
                UE = gaussian_filter(upper_envelope[keepers], 1)

                #
                # Find the inflection point where the slope comes up again.
                #
                #the slope
                DUE = UE[1:] - UE[:-1]
                #the max up to this radius
                cummax = np.maximum.accumulate(UE)
                #where the slope is positive
                ok = DUE > 0
                #and not too close to the center (for noise)
                ok = np.logical_and(ok, r_cen[keepers][1:] > 1e-3)
                #and it has to come down below half its maximum
                ok = np.logical_and(ok, UE[1:] < 0.5 * cummax[1:])

                index = np.argmax(r_cen[keepers])
                if ok.any():
                    #find out the radius where the inflection happens.
                    index = np.where(ok)[0][0]
                R_KEEP = r_cen[keepers][index]
                self.rinflection[core_id] = R_KEEP
                self.rinflection_list.append(R_KEEP)
コード例 #5
0
ファイル: isol.py プロジェクト: luzloujv/p19_newscripts
    def run(self, core_list=None, frames=None):
        dx = 1. / 2048
        nx = 1. / dx
        thtr = self.this_looper.tr
        all_cores = np.unique(thtr.core_ids)
        if core_list is None:
            core_list = all_cores
        if hasattr(core_list, 'v'):
            core_list = core_list.v  #needs to not have unit.
            core_list = core_list.astype('int')

        thtr.sort_time()

        if frames is None:
            frames = thtr.frames
        if frames == 'reg':
            times = thtr.times
            #assume the first nonzero time is dt_sim
            dt = times[times > 0][0]
            nframe = times / dt
            outliers = np.round(nframe) - nframe
            frame_mask = np.abs(outliers) < 1e-3
            frames = thtr.frames[frame_mask]
            times = thtr.times[frame_mask]
            self.frames = frames
            self.times = times

        tsorted = thtr.times
        self.core_list = core_list
        for core_id in core_list:
            ms = trackage.mini_scrubber(thtr, core_id)
            self.ms = ms
            if ms.nparticles < 10:
                continue
            print('go ', core_id)

            this_center = ms.mean_center[:, -1]
            self.cores_used.append(core_id)
            frame = self.this_looper.target_frame

            ds = self.this_looper.load(frame)
            xtra_energy.add_energies(ds)

            ms.particle_pos(core_id)
            pos = np.stack([
                ms.particle_x.transpose(),
                ms.particle_y.transpose(),
                ms.particle_z.transpose()
            ])

            sphere = ds.sphere(center=this_center, radius=0.25)
            name = self.this_looper.sim_name
            if 0:
                proj = ds.proj(YT_grav_energy, 0, data_source=sphere)
                pw = proj.to_pw(center=this_center, origin='domain')
                pw.set_cmap(YT_grav_energy, 'Greys')
                pw.zoom(4)
                pw.annotate_sphere(this_center, ds.arr(7e-3, 'code_length'))
                pw.save('plots_to_sort/isohol_%s_n%04d_' % (name, frame))

            if 0:
                proj = ds.proj('density', 0, data_source=sphere)
                pw = proj.to_pw(center=this_center, origin='domain')
                pw.zoom(4)
                pw.set_cmap('density', 'Greys')
                pw.annotate_sphere(this_center, ds.arr(7e-3, 'code_length'))
                pw.save('plots_to_sort/isohol_%s_n%04d_' % (name, frame))

            if 0:
                plot = yt.PhasePlot(sphere,
                                    YT_density,
                                    YT_cell_volume, [YT_cell_mass],
                                    weight_field=None)
                plot.save('plots_to_sort/isorho_%s_n%04d' % (name, frame))
                pdb.set_trace()
            if 0:
                fig, ax = plt.subplots(1, 1)
                ax.scatter(sphere[YT_radius], sphere[YT_density])
                ax.scatter(ms.r[:, -1],
                           ms.density[:, -1],
                           facecolor='None',
                           edgecolor='r')
                axbonk(ax, xscale='log', yscale='log')
                fig.savefig('plots_to_sort/density_radius_%s_c%04d.png' %
                            (name, core_id))
            if 0:
                fig, ax = plt.subplots(1, 1)
                ax.scatter(sphere[YT_radius], -sphere[YT_grav_energy])
                axbonk(ax,
                       xscale='log',
                       yscale='log',
                       xlabel='r',
                       ylabel='|grad phi|')
                fig.savefig('plots_to_sort/potential_radius_%s_c%04d.png' %
                            (name, core_id))
            if 0:
                fig, ax = plt.subplots(1, 1)
                ax.scatter(sphere[YT_radius], sphere[YT_kinetic_energy])
                axbonk(ax,
                       xscale='log',
                       yscale='log',
                       xlabel='r',
                       ylabel='|grad phi|')
                fig.savefig('plots_to_sort/KE_radius.png_%s_c%04d.png' %
                            (name, core_id))
            if 0:
                fig, ax = plt.subplots(1, 1)
                ok = sphere[YT_density] > 300
                vx = sphere[YT_velocity_x]
                vy = sphere[YT_velocity_y]
                vz = sphere[YT_velocity_z]
                dv = sphere[YT_cell_volume]
                rho = sphere[YT_density]
                m = (rho[ok] * dv[ok]).sum()
                vx_bar = (vx * dv * rho)[ok].sum() / m
                vy_bar = (vy * dv * rho)[ok].sum() / m
                vz_bar = (vz * dv * rho)[ok].sum() / m
                vbar = 0.5 * ((vx - vx_bar)**2 + (vy - vy_bar)**2 +
                              (vz - vz_bar)**2)
                ax.scatter(sphere[YT_radius], vbar)
                axbonk(ax, xscale='log', yscale='log', xlabel='r', ylabel='KE')
                fig.savefig('plots_to_sort/Velocity_radius_%s_c%04d.png' %
                            (name, core_id))

            if 0:
                fig, ax = plt.subplots(1, 1)
                rrr = ms.r + 0
                rrr[rrr < 1. / 2048] = 1. / 2048
                rrr = rrr.transpose()
                den = ms.density.transpose()
                fig, ax = plt.subplots(1, 1)
                xmin = 1 / 2048
                xmax = 3.5e-1
                ymin = 1e-2
                ymax = 1e6
                for frame in frames:
                    nframe = np.where(thtr.frames == frame)
                    ax.clear()
                    ax.plot(rrr[:nframe, :],
                            den[:nframe, :],
                            c=[0.5] * 4,
                            linewidth=0.2)
                    #ax.plot( ms.this_x.transpose(), ms.this_y.transpose(), c=[0.5]*4, linewidth=0.2)
                    axbonk(ax,
                           xlabel='r',
                           ylabel='rho',
                           xscale='log',
                           yscale='log',
                           xlim=[xmin, xmax],
                           ylim=[ymin, ymax])
                    outname = 'plots_to_sort/rho-r-t_%s_c%04d_i%04d' % (
                        name, core_id, nframe)
                    fig.savefig(outname)
                    print(outname)
            if 0:
                import colors
                fig, ax = plt.subplots(1, 1)
                t = thtr.times / colors.tff
                rrr = ms.r + 0
                rrr[rrr < 1. / 2048] = 1. / 2048
                rrr = rrr.transpose()
                den = ms.density.transpose()
                fig, ax = plt.subplots(1, 1)
                xmin = 1 / 2048
                xmax = 3.5e-1
                ymin = 1e-2
                ymax = 1e6
                ax.plot(t, den, c=[0.5] * 4, linewidth=0.2)
                axbonk(ax, xlabel=r'$t/t_{ff}$', ylabel='rho', yscale='log')
                fig.savefig('plots_to_sort/rho-t_%s_c%04d' % (name, core_id))
            if 1:
                import colors
                fig, ax = plt.subplots(2, 2, figsize=(12, 12))
                ax0 = ax[0][0]
                ax1 = ax[0][1]
                ax2 = ax[1][0]
                rrr = ms.r + 0
                rrr[rrr < 1. / 2048] = 1. / 2048
                rrr = rrr.transpose()
                t = thtr.times / colors.tff
                den = ms.density.transpose()
                xmin = 1 / 2048
                xmax = 3.5e-1
                ymin = 1e-2
                ymax = 1e6
                for iframe, frame in enumerate(frames):
                    nframe = np.where(thtr.frames == frame)[0][0]
                    ax0.clear()
                    ax1.clear()
                    ax0.plot(rrr[:nframe + 1, :],
                             den[:nframe + 1, :],
                             c=[0.5] * 4,
                             linewidth=0.2)
                    ax0.scatter(rrr[nframe, :], den[nframe, :], c='k', s=0.2)

                    ax1.plot(t[:nframe + 1],
                             den[:nframe + 1, :],
                             c=[0.5] * 4,
                             linewidth=0.2)
                    ax1.scatter([t[nframe]] * ms.nparticles,
                                den[nframe, :],
                                c='k',
                                s=0.2)

                    ax2.plot(pos[0][:nframe + 1, :],
                             pos[1][:nframe + 1, :],
                             c=[0.5] * 4,
                             linewidth=0.2)
                    ax2.scatter(pos[0][nframe + 1, :],
                                pos[1][nframe + 1, :],
                                c='k',
                                s=0.2)
                    #ax.plot( ms.this_x.transpose(), ms.this_y.transpose(), c=[0.5]*4, linewidth=0.2)
                    axbonk(ax0,
                           xlabel='r',
                           ylabel='rho',
                           xscale='log',
                           yscale='log',
                           xlim=[xmin, xmax],
                           ylim=[ymin, ymax])
                    outname = 'plots_to_sort/so_much_hair_%s_c%04d_i%04d' % (
                        name, core_id, iframe)
                    fig.savefig(outname)
                    print(outname)
コード例 #6
0
ファイル: te_ke_phase.py プロジェクト: dcollins4096/ytscripts
    cmap = mpl.cm.jet
    cmap.set_under('w')
    color_map = mpl.cm.ScalarMappable(norm=norm, cmap=cmap)

    ploot = ax.pcolormesh(KIN, TTT, CCC, norm=norm)
    ax.set_xlabel(phase.x_field)
    ax.set_ylabel(phase.y_field)
    fig.colorbar(ploot, ax=ax)


if 'ds' not in dir() or always:
    car.frames = [frame]
    #directory = "/scratch1/dcollins/Paper49_EBQU/ca07_nofield_mach10"; frame=2100
    #ds = yt.load("%s/DD%04d/data%04d"%(directory, frame, frame))
    ds = car.load(frame)
    xe.add_energies(ds)
    ds.add_field('v2', function=v2, units='code_velocity**2')
    ds.add_field(
        'therm_work',
        function=therm_work,
        units='code_density*code_velocity/code_length',
        validators=[yt.ValidateSpatial(1, 'velocity-%s' % s) for s in 'xyz'],
        sampling_type='cell')
    ds.add_field('te_ke_ratio',
                 function=te_ke_ratio,
                 units='dimensionless',
                 sampling_type='cell')
    region = ds.all_data()

if 1:
コード例 #7
0
fields = [
    'x', 'y', 'z', 'velocity_magnitude', 'magnetic_field_strength', 'density'
]
fields += ['kinetic_energy', 'magnetic_energy', 'grav_energy', 'therm_energy']
fields += ['momentum_flux', 'gravity_work', 'mag_work', 'pressure_work']
#fields = ['grav_energy']#,'therm_energy']
if 0:
    #h5ptr = h5py.File('u05_0125_peaklist.h5','r')
    #cen = h5ptr['peaks'][79]
    cen = np.array([0.40258789, 0.6862793, 0.05249023])

    ds = yt.load(dl.enzo_directory + "/DD0125/data0125")
    #xtra_energy.add_energies(ds)
    #xtra_energy.add_test_energies(ds)
    xtra_energy.add_force_terms(ds)
    xtra_energy.add_energies(ds)

    radius = 0.1
    sphere = ds.sphere(cen, radius)
    for field in fields:
        proj = ds.proj(field, 0, center=cen, data_source=sphere)
        pw = proj.to_pw(center=cen, width=2. * radius)
        #pw.set_zlim('pressure_work',-1e6,1e6)
        pw.set_log(field, True, linthresh=0.1)
        pw.save('/home/dcollins4096/PigPen/test_c0079')

#print(gx['momentum_flux'])
#print(gx['grav_x'])
#for frame in this_looper.ds_list:
#    xtra_energy.add_test_energies(this_looper.ds_list[frame])
#sys.exit(0)
コード例 #8
0
ファイル: ge_slope.py プロジェクト: luzloujv/p19_newscripts
    def run(self, core_list=None, do_plots=True, do_proj=True):
        if core_list is None:
            core_list = np.unique(this_looper.tr.core_ids)

        this_looper = self.this_looper
        frame = this_looper.target_frame
        ds = this_looper.load(frame)
        G = ds['GravitationalConstant'] / (4 * np.pi)
        xtra_energy.add_energies(ds)
        for core_id in core_list:
            print('Potential %s %d' % (this_looper.sim_name, core_id))

            ms = trackage.mini_scrubber(this_looper.tr, core_id)
            c = nar([ms.mean_x[-1], ms.mean_y[-1], ms.mean_z[-1]])

            R_SPHERE = 8 / 128
            rsph = ds.arr(R_SPHERE, 'code_length')
            sp = ds.sphere(c, rsph)

            GE = np.abs(sp['grav_energy'])
            dv = np.abs(sp['cell_volume'])
            RR = sp['radius']
            DD = sp['density']

            R_KEEP = self.rinflection[core_id]

            #2d distribution of GE vs r

            gbins = np.geomspace(GE[GE > 0].min(), GE.max(), 65)
            rbins = np.geomspace(RR[RR > 0].min(), RR.max(), 67)
            r_cen = 0.5 * (rbins[1:] + rbins[:-1])  #we'll need this later.
            hist, xb, yb = np.histogram2d(RR,
                                          GE,
                                          bins=[rbins, gbins],
                                          weights=dv)

            #get the zones in the sphere that are
            #within R_KEEP
            ok_fit = np.logical_and(RR < R_KEEP, GE > 0)

            rok = RR[ok_fit].v

            #
            # Binding energy and GMM/R
            #
            ge_total = (GE[ok_fit] * dv[ok_fit]).sum()
            mtotal = (sp['cell_mass'][ok_fit]).sum()
            gmm = G * mtotal**2 / R_KEEP
            self.output['ge_total'].append(ge_total)
            self.output['gmm'].append(gmm)

            if 1:
                #store stuff
                self.output['mass'].append(mtotal)
                self.output['r0'].append(R_KEEP)

            if 0:
                #Just fit GE
                def plain_powerlaw(x, q, r0):
                    return q * x + r0

                popt, pcov = curve_fit(plain_powerlaw, np.log10(rok),
                                       np.log10(GE[ok_fit]))
                GE_fit_line = 10**plain_powerlaw(np.log10(rok), *popt)
                ouput['alpha_ge'].append(popt[0])
            if 1:
                #Better ge fit
                def plain_powerlaw(x, q, norm):
                    return (2 * q + 2) * x + norm  #np.log10(G*mtotal/R_KEEP)

                popt, pcov = curve_fit(plain_powerlaw, np.log10(rok / R_KEEP),
                                       np.log10(GE[ok_fit]))
                A = 10**popt[1]
                alpha = popt[0]
                rmax = (rok).max()
                rmin = (rok).min()

                rfit = np.linspace(rmin, rmax, 128)
                rr = 0.5 * (rfit[1:] + rfit[:-1])
                dr = rfit[1:] - rfit[:-1]

                GE_fit_line = 10**plain_powerlaw(np.log10(rr / R_KEEP), *popt)
                #GE_fit_line=10**plain_powerlaw(np.log10(rok/R_KEEP), *popt)
                self.output['alpha_ge'].append(alpha)
                self.output['A'].append(A)
                self.output['AA'].append(G**2 * mtotal**2 /
                                         R_KEEP**(2 * alpha + 2))

                R0 = R_KEEP
                self.output['analytic'].append(
                    4 * np.pi * A / ((R0**(2 * alpha + 2) * (2 * alpha + 5))) *
                    (rmax**(2 * alpha + 5) - rmin**(2 * alpha + 5)))
                self.output['rmin'].append(rmin)
                self.output['rmax'].append(rmax)
                self.output['analytic2'].append(
                    4 * np.pi * A / ((R0**(2 * alpha + 2) * (2 * alpha + 5))) *
                    (R_KEEP**(2 * alpha + 5)))
                R0 = R_KEEP
                M = mtotal
                E1 = (-G * M * M / R0**(2 * alpha + 6) /
                      (2 * alpha + 5)) * (R0**(2 * alpha + 5) -
                                          rmin**(2 * alpha + 5))

                self.output['ann_good'].append(E1)

            if 1:
                #Fit density
                #Maybe its not necessary to histogram first, but it makes plotting easier.
                rbins = np.geomspace(RR[RR > 0].min(), RR.max(), 67)
                dbins = np.geomspace(DD[DD > 0].min(), DD.max(), 65)
                dhist, xbdr, ybdr = np.histogram2d(RR,
                                                   DD,
                                                   bins=[rbins, dbins],
                                                   weights=dv)

                dok = DD[ok_fit]

                def powerlaw_r0_rkeep(r, q, rho0):
                    return q * np.log10(r / R_KEEP) + np.log10(rho0)

                poptd, pcovd = curve_fit(powerlaw_r0_rkeep, rok, np.log10(dok))
                self.output['alpha_rho'].append(poptd[0])

            if do_proj:
                proj_axis = 0
                dx = 1 / 2048
                nx = 2 * R_SPHERE / dx

                pd = ds.proj('density', proj_axis, data_source=sp, center=c)
                frb = pd.to_frb(2 * R_SPHERE, nx, center=c)
                fig2, rx = plt.subplots(1, 2, figsize=(12, 8))
                rx0 = rx[0]
                rx1 = rx[1]
                column_density = frb['density']
                norm = mpl.colors.LogNorm(column_density.min(),
                                          column_density.max())
                rx0.imshow(column_density, norm=norm)

                column_density = frb[YT_grav_energy]
                linthresh = 1
                norm = mpl.colors.SymLogNorm(linthresh,
                                             vmin=column_density.min(),
                                             vmax=0)
                rx1.imshow(column_density, norm=norm)

                center = nar(column_density.shape) / 2
                circle = plt.Circle(center, R_KEEP / dx, fill=False)
                rx0.add_artist(circle)
                circle = plt.Circle(center, R_KEEP / dx, fill=False)
                rx1.add_artist(circle)
                fig2.savefig('plots_to_sort/cPhiProj_%s_c%04d' %
                             (this_looper.sim_name, core_id))
            #Some plotting and fitting.
            if do_plots:

                fig, ax = plt.subplots(1, 2)
                ax0 = ax[0]
                ax1 = ax[1]

                if 0:
                    #plot GE
                    ax0.plot(r_cen[keepers], UE)
                    pch.helper(h2, xb, yb, ax=ax0, transpose=False)
                    #ax0.plot( rok, GE_fit_line,c='r')
                    ax0.plot(rr, GE_fit_line, c='r')
                    ax0.scatter(R_KEEP, UE[index], c='r')
                    AlsoA = colors.G * mtotal**2 / (4 * np.pi) * R_KEEP**(-4)
                    ax0.scatter(R_KEEP, A, c='g', marker='*')
                    ax0.scatter(R_KEEP, AlsoA, c='b', marker='*')
                if 1:
                    #plot density
                    pch.helper(dhist, xbdr, ybdr, ax=ax1, transpose=False)
                    axbonk(ax1,
                           xscale='log',
                           yscale='log',
                           xlabel='r',
                           ylabel='rho')
                    #density_fit_line=10**( poptd[0]*np.log10(rok)+np.log10(poptd[1]))
                    density_fit_line = 10**(powerlaw_r0_rkeep(rok, *poptd))
                    ax1.plot(rok, density_fit_line, c='g')

                    if 0:
                        rmin = r_cen[keepers].min()
                        ok2 = (RR < R_KEEP) * (RR > rmin)
                        M = sp['cell_mass'][ok2].sum()
                        coe = 1 / (8 * np.pi * G)
                        power = 2 * poptd[0] + 2
                        #print('DANS POWER',power)
                        #phi_del_squ_analy = (coe*G**2*M**2*rok**(power))/R_KEEP**(2*poptd[0]+6)
                        #horse around
                        DanA = (coe * G**2 * M**2) / R_KEEP**(2 * poptd[0] + 6)
                        phi_del_squ_analy = DanA * rok**(power)
                        self.output['DanA'].append(DanA)
                        alpha = poptd[0]
                        rho0 = poptd[1]
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(2*alpha+5)/(alpha+3))**2*rok**power
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(alpha+2)/(alpha+3))**2*rok**power
                        ax0.plot(rok, phi_del_squ_analy, c='g')

                    if 0:
                        #works pretty well
                        M = sp['cell_mass'].sum()
                        coe = 1 / (8 * np.pi * G)
                        power = 2 * poptd[0] + 2
                        phi_del_squ_analy = (coe * G**2 * M**2 * rbins**(power)
                                             ) / RR.max()**(2 * poptd[0] + 6)
                        #print(phi_del_squ_analy)
                        ax0.plot(rbins, phi_del_squ_analy, c='k')

                if 0:
                    #color the upper envelope
                    #to make sure we get it right.
                    print(hist.shape)
                    y = np.arange(hist.shape[1])
                    y2d = np.stack([y] * hist.shape[0])
                    argmax = np.argmax(y2d * (hist > 0), axis=1)
                    ind = np.arange(hist.shape[0])
                    #take = np.ravel_multi_index(nar([argmax,ind]),hist.shape)
                    take = np.ravel_multi_index(nar([ind, argmax]), hist.shape)
                    h1 = hist.flatten()
                    h1[take] = hist.max()
                    h1.shape = hist.shape
                    pch.helper(h1, xb, yb, ax=ax0, transpose=False)

                outname = 'plots_to_sort/%s_c%04d_potfit' % (
                    this_looper.sim_name, core_id)
                axbonk(ax0,
                       xscale='log',
                       yscale='log',
                       xlabel='r',
                       ylabel='grad phi sq')
                fig.savefig(outname)
                print(outname)
コード例 #9
0
def plot_mountain_top(this_looper, core_list=None, r_inflection=None, r_mass=None):

    sim_name = this_looper.sim_name
    thtr=this_looper.tr
    if core_list is None:
        core_list=np.unique(this_looper.tr.core_ids)

    frame=this_looper.target_frame
    ds = this_looper.load(frame)
    if 0:
        #projections.
        #I'm not quite right.
        frame = 0
        ds = yt.load('/data/cb1/Projects/P19_CoreSimulations/new_sims/vel_test/DD%04d/data%04d'%(frame,frame))
        for axis in [0,1,2]:
            proj = ds.proj('density',axis)
            pw=proj.to_pw()
            pw.annotate_velocity()
            pw.save('plots_to_sort/arse')
    xtra_energy.add_energies(ds)
    xtra_energy.add_gravity(ds)
    reload(mountain_top)
    #radius=1e-2
    for core_id in core_list:
        ms = trackage.mini_scrubber(thtr,core_id,do_velocity=True) 
        ms.get_central_at_once(core_id)

        if r_inflection is not None and False:
            radius = r_inflection[core_id]
            radius = ds.arr(radius, 'code_length')
        else:
            radius=1/128
            radius = ds.arr(radius,'code_length')


        peak = this_looper.targets[core_id].peak_location
        this_target = this_looper.targets[core_id]
        top1=None
        if 0:
            top1 = mountain_top.top(ds,peak, rhomin = this_target.min_density, peak_id=core_id, radius=radius)
        proj_axis=0
        if proj_axis == 1:
            print("ERROR: plotting messed up for axis 1")
            raise
        h_axis = ds.coordinates.x_axis[proj_axis]
        v_axis = ds.coordinates.y_axis[proj_axis]
        left = peak - radius.v
        right = peak + radius.v
        dx = 1/2048
        nzones = np.floor((right-left)/dx).astype('int')

        SphereVbar = None
        if 1:
            if r_inflection is not None:
                RRR = r_inflection[core_id]
                sph = ds.sphere( peak, RRR)
                M = (sph[YT_density]*sph[YT_cell_volume]).sum()
                SphereVbar = [( (sph[('gas','velocity_%s'%s)]*sph[YT_cell_mass]).sum()/M ).v for s in 'xyz']
                #SphereVbar = [( (sph[('gas','momentum_%s'%s)]*sph[YT_cell_mass]).sum()/M ).v for s in 'xyz']



        cg = ds.covering_grid(4,left,nzones, num_ghost_zones=1)
        #cg = ds.covering_grid(0,[0.0]*3,[128]*3, num_ghost_zones=1)
        def from_cg(field):
            ccc = cg[field]#.swapaxes(0,2)
            return ccc.v
        def proj(arr):
            return arr.sum(axis=proj_axis)
        fig,ax=plt.subplots(1,1)
        ax.set_aspect('equal')


        #field = ('gas','momentum_x')
        field='density'
        #field=YT_grav_energy
        if type(field) is tuple:
            field_name = field[1]
        else:
            field_name=field
        rho= from_cg(field)
        dv = from_cg(YT_cell_volume)
        PPP= proj(rho)

        if field_name in ['density']:
            norm = mpl.colors.LogNorm(vmin=PPP.min(), vmax=PPP.max())
        else:
            norm = mpl.colors.Normalize(vmin=PPP.min(), vmax=PPP.max())

        x_h = proj( from_cg( ('gas','xyz'[h_axis]) ) )
        x_v = proj( from_cg( ('gas','xyz'[v_axis]) ) )


        "H for horizontal, V for vertical"
        if 0:
            stream_name='momentum'
            stream_h = 'momentum_%s'%'xyz'[h_axis]
            stream_v = 'momentum_%s'%'xyz'[v_axis]
        if 1:
            stream_name='velocity'
            stream_h = 'velocity_%s'%'xyz'[h_axis]
            stream_v = 'velocity_%s'%'xyz'[v_axis]
        if 0:

            stream_name='accel'
            stream_h = 'grav_%s'%'xyz'[h_axis]
            stream_v = 'grav_%s'%'xyz'[v_axis]




        Q_H = from_cg(stream_h)
        Q_V = from_cg(stream_v)
        M = (rho*dv).sum()
        if 0:
            Q_H_mean=0
            Q_V_mean=0
        if 0:
            Q_H_mean = Q_H.mean()
            Q_V_mean = Q_V.mean()
        if 0:
            stream_name += "_whole_mean"
            #works pretty good
            Q_H_mean = (Q_H*dv*rho).sum()/M
            Q_V_mean = (Q_V*dv*rho).sum()/M
        if 0:
            mean_vx = ms.mean_vx[-1]
            mean_vy = ms.mean_vy[-1]
            mean_vz = ms.mean_vz[-1]
            mean = [mean_vx, mean_vy, mean_vz]
            Q_H_mean = mean[ h_axis]
            Q_V_mean = mean[ v_axis]
        if 1:
            stream_name += "_vcentral"
            Q_H_mean = ms.vcentral[h_axis,-1]
            Q_V_mean = ms.vcentral[v_axis,-1]
        if 0:
            LLL = top1.leaf
            Q_H_mean =((LLL['density']*LLL['cell_volume']*LLL[stream_h]).sum()/(LLL['density']*LLL['cell_volume']).sum()).v
            Q_V_mean =((LLL['density']*LLL['cell_volume']*LLL[stream_v]).sum()/(LLL['density']*LLL['cell_volume']).sum()).v
        if 0:
            LLL = top1.leaf
            Q_H_mean =((LLL['cell_volume']*LLL[stream_h]).sum()/(LLL['cell_volume']).sum()).v
            Q_V_mean =((LLL['cell_volume']*LLL[stream_v]).sum()/(LLL['cell_volume']).sum()).v
        if 0:
            Q_H_mean = SphereVbar[ h_axis]
            Q_V_mean = SphereVbar[ v_axis]
        Q_H -= Q_H_mean
        Q_V -= Q_V_mean

        Q_H_p = proj(Q_H)
        Q_V_p = proj(Q_V)



        #TheX,TheY,TheU,TheV= x_h, x_v, Q_H, Q_V
        TheX, TheY = np.meshgrid( np.unique( x_h), np.unique( x_v))
        TheU,TheV= Q_H_p, Q_V_p
        if 0:
            print(x_h)
            print('poooo')
            print(TheX.size)
            print(TheY.size)
            print(TheU.size)

        gg = TheU**2+TheV**2
        ok = gg>0


        if 0:
            X_to_plot   = TheX#.transpose()
            Y_to_plot   = TheY#.transpose()
            PPP_to_plot =  PPP#.transpose()
            U_to_plot =   TheU#.transpose()
            V_to_plot =   TheV#.transpose()
        else:
            X_to_plot   = TheY.transpose()
            Y_to_plot   = TheX.transpose()
            PPP_to_plot =  PPP.transpose()
            U_to_plot =   TheU.transpose()
            V_to_plot =   TheV.transpose()



        #ax.imshow( PPP,norm=norm)
        ploot=ax.pcolormesh( X_to_plot, Y_to_plot, PPP_to_plot, norm=norm, shading='nearest')
        fig.colorbar(ploot)

        #U_to_plot[ PPP_to_plot == 0] = np.nan
        #V_to_plot[ PPP_to_plot == 0] = np.nan
        ax.streamplot(X_to_plot, Y_to_plot, U_to_plot, V_to_plot, density=2.5)


        axbonk(ax, xlabel='xyz'[h_axis], ylabel='xyz'[v_axis])
        outname='plots_to_sort/proj_%s_%s_c%04d_n%04d_%s_%s.png'%('xyz'[proj_axis],sim_name, core_id, frame,field_name, stream_name)
        fig.savefig(outname)
        print(outname)
コード例 #10
0
ファイル: ge_cum.py プロジェクト: luzloujv/p19_newscripts
    def run(self,core_list=None, do_plots=True,do_proj=True):
        if core_list is None:
            core_list = np.unique(this_looper.tr.core_ids)

        this_looper=self.this_looper
        frame = this_looper.target_frame
        ds = this_looper.load(frame)
        G = ds['GravitationalConstant']/(4*np.pi)
        xtra_energy.add_energies(ds)
        for core_id in core_list:
            #print('Potential %s %d'%(this_looper.sim_name,core_id))

            ms = trackage.mini_scrubber(this_looper.tr,core_id)
            c = nar([ms.mean_x[-1], ms.mean_y[-1],ms.mean_z[-1]])
            
            R_SPHERE = 8/128
            rsph = ds.arr(R_SPHERE,'code_length')
            sp = ds.sphere(c,rsph)

            GE = np.abs(sp['grav_energy'])
            dv = np.abs(sp['cell_volume'])
            RR = sp['radius']
            DD = sp['density']

            R_KEEP = R_SPHERE #self.rinflection[core_id]

            rinflection=None
            if self.rinflection is not None:
                rinflection = self.rinflection[core_id]

            #get the zones in the sphere that are
            #within R_KEEP
            ok_fit = np.logical_and(RR  < R_KEEP, GE>0)

            rok=RR[ok_fit].v



            ORDER = np.argsort(rok)
            rho_o = DD[ok_fit][ORDER].v
            ge_o = GE[ok_fit][ORDER].v
            dv_o  = dv[ok_fit][ORDER].v
            rr_o_full  = RR[ok_fit][ORDER].v
            mass_r = (rho_o*dv_o).cumsum()
            enrg_r = (ge_o*dv_o).cumsum()

            rr_o = np.linspace( max([1/2048, rr_o_full.min()]), rr_o_full.max(), 128)

            enrg_i = interp1d( rr_o_full, enrg_r)

            gmm_r = interp1d( rr_o_full, G*mass_r**2/rr_o_full)



            all_r,all_m=rr_o_full[1:], mass_r[1:]
            my_r = np.linspace(max([1/2048, all_r.min()]),all_r.max(),1024)
            mbins = np.linspace( all_m.min(), all_m.max(), 128)
            thing, mask = np.unique( all_r, return_index=True)
              
            mfunc = interp1d( all_r[mask], all_m[mask])
            my_m = gaussian_filter(mfunc(my_r),2)
            fact=enrg_r.max()/my_m.max()

            fig2,ax2=plt.subplots(1,1)
            ay0=ax2
            ay0.plot( rr_o, enrg_i(rr_o), c='k', label=r'$E_G$')
            ay0.plot( rr_o, gmm_r(rr_o), c='r', label = r'$GM(<R)^2/R$')

            az0=ay0.twinx()
            ay0.plot( all_r, all_m*fact, c=[0.5]*4)#, label=r'$M*f$')
            ay0.plot( my_r, my_m * fact, c='m', label=r'$M*f$')
            #ay0.plot( xcen, average_mass, c='r')
            #az0.plot( my_r, my_m )
            #az0.plot( rr_o, rho_o)
            #az0.set_yscale('log')
            dm=(my_m[1:]- my_m[:-1])
            mm =0.5*(my_m[1:]+my_m[:-1])
            dr=(my_r[1:]-my_r[:-1])
            dm_dr = dm/dr
            rbins = 0.5*(my_r[1:]+my_r[:-1])

            SWITCH=2*rbins*dm_dr/mm 
            #az0.plot( rbins, SWITCH*my_m.max()/SWITCH.max())
            az0.plot( rbins, SWITCH, c='b', label='$2 M^\prime /M$')
            findit=np.logical_and( rbins>0.01, SWITCH <= 1)
            PROBLEM=False
            if findit.sum() > 0:
                ok = np.where(findit)[0][0]
                SWITCH=2*rbins*dm_dr/mm 
                az0.scatter( my_r[ok-1], SWITCH[ok-1], c='b')
                az0.axvline( my_r[ok-1], c='b')
                az0.axhline(1, c='b')
            else:
                PROBLEM=True
                print("PROBLEM CANNOT FIND RMASS")
            if rinflection is not None:
                ay0.axvline( rinflection, c='r', label='$R_I$')
                
            if PROBLEM:
                ay0.set_title('NO MASS EDGE')
            outname='plots_to_sort/%s_cuml_c%04d.png'%(this_looper.sim_name, core_id)
            ay0.legend(loc=2)
            az0.legend(loc=4)
            axbonk( ay0, xlabel='r',ylabel='E/M', xscale='log', yscale='log')
            axbonk( az0, ylabel=r'$2 M^\prime/(M/R)$', xscale='log', yscale='log')
            fig2.savefig(outname)
            print(outname)




            if 0:
                #Fit density
                #Maybe its not necessary to histogram first, but it makes plotting easier.
                rbins = np.geomspace( RR [RR >0].min(), RR .max(),67)
                dbins = np.geomspace( DD[DD>0].min(), DD.max(),65)
                dhist, xbdr, ybdr = np.histogram2d( RR , DD, bins=[rbins,dbins],weights=dv)

                dok=DD[ok_fit]
                def powerlaw_r0_rkeep( r, q, rho0):
                    return q*np.log10(r/R_KEEP)+np.log10(rho0)
                poptd, pcovd=curve_fit(powerlaw_r0_rkeep, rok, np.log10(dok))
                self.output['alpha_rho'].append(poptd[0])

            if do_proj:
                proj_axis=0
                dx = 1/2048
                nx = 2*R_SPHERE/dx

                pd = ds.proj('density',proj_axis,data_source=sp, center=c)
                frb=pd.to_frb(2*R_SPHERE,nx,center=c)
                fig2,rx=plt.subplots(1,2, figsize=(12,8))
                rx0=rx[0]; rx1=rx[1]
                column_density=frb['density']
                norm = mpl.colors.LogNorm( column_density.min(),column_density.max())
                rx0.imshow(column_density,norm=norm)

                column_density=frb[YT_grav_energy]
                linthresh=1
                norm = mpl.colors.SymLogNorm(linthresh, vmin=column_density.min(),vmax=0)

                xx = ds.coordinates.x_axis[proj_axis]
                yy = ds.coordinates.y_axis[proj_axis]
                vh=frb['velocity_%s'%'xyz'[xx]][::8]
                vv=frb['velocity_%s'%'xyz'[yy]][::8]
                nx,ny=column_density.shape
                the_x,the_y = np.mgrid[0:nx:8,0:ny:8]
                #pdb.set_trace()
                #the_x=frb['xyz'[xx]]
                #the_y=frb['xyz'[yy]]

                rx1.imshow(column_density,norm=norm)
                rx1.quiver(the_x,the_y,vh,vv)

                center = nar(column_density.shape)/2
                circle = plt.Circle( center, R_KEEP/dx,fill=False)
                rx0.add_artist(circle)
                circle = plt.Circle( center, R_KEEP/dx,fill=False)
                rx1.add_artist(circle)
                fig2.savefig('plots_to_sort/cPhiProj_%s_c%04d'%(this_looper.sim_name, core_id))
            #Some plotting and fitting.
            if do_plots:

                fig,ax=plt.subplots(1,2)
                ax0=ax[0]; ax1=ax[1]

                if 1:
                    #plot GE
                    #ax0.plot(r_cen[keepers], UE)
                    pch.helper(h2,xb,yb,ax=ax0,transpose=False)
                    #ax0.plot( rok, GE_fit_line,c='r')
                    ax0.plot( rr, GE_fit_line,c='r')
                    #ax0.scatter( R_KEEP,UE[index],c='r')
                    #AlsoA=colors.G*mtotal**2/(4*np.pi)*R_KEEP**(-4)
                    ax0.scatter( R_KEEP, A, c='r',marker='*')
                    #ax0.scatter( R_KEEP, AlsoA, c='b',marker='*')
                if 1:
                    #plot density
                    pch.helper(dhist,xbdr,ybdr,ax=ax1,transpose=False)
                    axbonk(ax1,xscale='log',yscale='log',xlabel='r',ylabel='rho')
                    #density_fit_line=10**( poptd[0]*np.log10(rok)+np.log10(poptd[1]))
                    density_fit_line=10**( powerlaw_r0_rkeep( rok, *poptd))
                    ax1.plot( rok, density_fit_line,c='g')

                    if 0:
                        rmin=r_cen[keepers].min()
                        ok2 = (RR < R_KEEP)*(RR >  rmin)
                        M = sp['cell_mass'][ok2].sum()
                        coe = 1/(8*np.pi*G)
                        power=2*poptd[0]+2
                        #print('DANS POWER',power)
                        #phi_del_squ_analy = (coe*G**2*M**2*rok**(power))/R_KEEP**(2*poptd[0]+6)
                        #horse around
                        DanA = (coe*G**2*M**2)/R_KEEP**(2*poptd[0]+6)
                        phi_del_squ_analy = DanA*rok**(power)
                        self.output['DanA'].append( DanA)
                        alpha=poptd[0]
                        rho0=poptd[1]
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(2*alpha+5)/(alpha+3))**2*rok**power
                        #phi_del_squ_analy = (4*np.pi*G*rho0*R_KEEP**(-alpha)*(alpha+2)/(alpha+3))**2*rok**power
                        ax0.plot( rok, phi_del_squ_analy ,c='g')

                    if 0:
                        #works pretty well
                        M = sp['cell_mass'].sum()
                        coe = 1/(8*np.pi*G)
                        power=2*poptd[0]+2
                        phi_del_squ_analy = (coe*G**2*M**2*rbins**(power))/RR.max()**(2*poptd[0]+6)
                        #print(phi_del_squ_analy)
                        ax0.plot( rbins, phi_del_squ_analy ,c='k')



                outname='plots_to_sort/%s_c%04d_potfit'%(this_looper.sim_name,core_id)
                axbonk(ax0,xscale='log',yscale='log',xlabel='r',ylabel='grad phi sq')
                fig.savefig(outname)
                print(outname)