def setUp(self): data1 = np.c_[[2., 3, 4, 5], [0, 10, 20, 30], [0, 1, 2, 3]] data2 = np.c_[[1., 2, 3, 4], [0, 5, 10, 20], [0, 1, 2, 3]] dataset1 = xye.XYEDataset(data1) dataset2 = xye.XYEDataset(data2) we1 = DatasetWithWavelength(dataset=dataset1, x=1.5) we2 = DatasetWithWavelength(dataset=dataset2, x=0.5) self.data_plus_scale_sets = [we1, we2]
def setUp(self): data1 = np.c_[[1, 4, 7], [2, 5, 8], [3, 6, 9]] data2 = np.c_[[10, 13, 16, 19], [11, 14, 18, 20], [12, 15, 17, 21]] xye1 = xye.XYEDataset(data=data1, name='test_data_0001.xye') create_datasetui(xye1) xye1.metadata['ui'].active = True xye2 = xye.XYEDataset(data=data2, name='test_data_0002.xye') create_datasetui(xye2) xye2.metadata['ui'].active = True self.datasets = [xye1, xye2]
def normalise_data_test(self): # test that normalisation leaves the x-data untouched and rescales the y and e correctly DETECTOR_COUNTS = 3.0 COUNT_KEY = 'Integrated Ion Chamber Count(counts)' data1 = np.c_[[0., 1, 2, 3], [0, 10, 20, 30], [0, 1, 2, 3]] data2 = np.c_[[1., 2, 3, 4], [0, 5, 10, 20], [0, 1, 2, 3]] dataset1 = xye.XYEDataset(data1, metadata={COUNT_KEY: 1.0}, name='d1') dataset2 = xye.XYEDataset(data2, metadata={COUNT_KEY: 1.0 / DETECTOR_COUNTS}, name='d2') dataset_pair = (dataset1, dataset2) result = processing.normalise_dataset(dataset_pair) print result print data2 self.assertTrue(np.allclose(result[:, 0], data2[:, 0])) # check x's self.assertTrue( np.allclose(result[:, 1], data2[:, 1] * DETECTOR_COUNTS)) # check y's self.assertTrue( np.allclose(result[:, 2], data2[:, 2] * np.sqrt(DETECTOR_COUNTS))) # check e's