#!/usr/bin/python # -*- coding: utf-8 -*- """This example demonstrates GTS (http://gts.sourceforge.net/) opportunities for creating surfaces VTU-files are created in /tmp directory after simulation. If you open those with paraview (or other VTK-based) program, you can create video, make screenshots etc.""" from numpy import linspace from yade import pack thetas = linspace(0, 2 * pi, num=16, endpoint=True) meridians = pack.revolutionSurfaceMeridians( [[(3 + rad * sin(th), 10 * rad + rad * cos(th)) for th in thetas] for rad in linspace(1, 2, num=10)], linspace(0, pi, num=10)) surf = pack.sweptPolylines2gtsSurface( meridians + [[Vector3(5 * sin(-th), -10 + 5 * cos(-th), 30) for th in thetas]]) O.bodies.append(pack.gtsSurface2Facets(surf)) sp = pack.SpherePack() sp.makeCloud(Vector3(-1, -9, 30), Vector3(1, -13, 32), .2, rRelFuzz=.3) O.bodies.append([sphere(c, r) for c, r in sp]) O.engines = [ ForceResetter(), InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Facet_Aabb()]), InteractionLoop([Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()]), NewtonIntegrator(gravity=(0, 0, -9.81)), VTKRecorder(iterPeriod=100,
""" CAUTION: Running this script can take very long! """ from numpy import arange from yade import pack import pylab # define the section shape as polygon in 2d; repeat first point at the end to close the polygon sq2 = sqrt(2) poly = ((3 + .1, 0), (3 + 0, .1), (3 + sq2, .1 + sq2), (3 + .1 + sq2, sq2), (3 + .1, 0)) #pylab.plot(*zip(*poly)); pylab.xlim(xmin=0); pylab.grid(); pylab.title('Meridian of the revolution surface\n(close to continue)'); pylab.gca().set_aspect(aspect='equal',adjustable='box'); pylab.show() thetas = arange(0, pi / 8, pi / 24) pts = pack.revolutionSurfaceMeridians([poly for theta in thetas], thetas, origin=Vector3(-4, 0, -1), orientation=Quaternion.Identity) surf = pack.sweptPolylines2gtsSurface(pts, capStart=True, capEnd=True, threshold=1e-4) O.bodies.append(pack.gtsSurface2Facets(surf, color=(1, 0, 1))) # fill this solid with triaxial packing; it will compute minimum-volume oriented bounding box # to minimize the number of throw-away spheres. # It does away with about 3k spheres for radius 3e-2 sp1 = SpherePack() sp1 = pack.randomDensePack(pack.inGtsSurface(surf), radius=3e-2, rRelFuzz=1e-1, memoizeDb='/tmp/gts-triax.sqlite', returnSpherePack=True)
""" CAUTION: Running this script can take very long! """ from numpy import arange from yade import pack import pylab # define the section shape as polygon in 2d; repeat first point at the end to close the polygon sq2 = sqrt(2) poly = ((3 + 0.1, 0), (3 + 0, 0.1), (3 + sq2, 0.1 + sq2), (3 + 0.1 + sq2, sq2), (3 + 0.1, 0)) # pylab.plot(*zip(*poly)); pylab.xlim(xmin=0); pylab.grid(); pylab.title('Meridian of the revolution surface\n(close to continue)'); pylab.gca().set_aspect(aspect='equal',adjustable='box'); pylab.show() thetas = arange(0, pi / 8, pi / 24) pts = pack.revolutionSurfaceMeridians( [poly for theta in thetas], thetas, origin=Vector3(-4, 0, -1), orientation=Quaternion.Identity ) surf = pack.sweptPolylines2gtsSurface(pts, capStart=True, capEnd=True, threshold=1e-4) O.bodies.append(pack.gtsSurface2Facets(surf, color=(1, 0, 1))) # fill this solid with triaxial packing; it will compute minimum-volume oriented bounding box # to minimize the number of throw-away spheres. # It does away with about 3k spheres for radius 3e-2 O.bodies.append( pack.randomDensePack(pack.inGtsSurface(surf), radius=3e-2, rRelFuzz=1e-1, memoizeDb="/tmp/gts-triax.sqlite") ) # translate the surface away and pack it again with sphere, but without the oriented bounding box (useOBB=False) # Here, we need 20k spheres (with more or less the same result) surf.translate(0, 0, 1) O.bodies.append(pack.gtsSurface2Facets(surf, color=(1, 0, 0))) O.bodies.append( pack.randomDensePack(
#pylab.plot(*zip(*poly)); pylab.xlim(xmin=0); pylab.grid(); pylab.title('Meridian of the revolution surface\n(close to continue)'); pylab.gca().set_aspect(aspect='equal',adjustable='box'); pylab.show() # angles at which we want this polygon to appear thetas = arange(0, pi / 2, pi / 24) # create 3d points from the 2d ones, turning the 2d meridian around the +y axis # for each angle, put the poly a little bit higher (+2e-3*theta); # this is just to demonstrate that you can do whatever here as long as the resulting # meridian has the same number of points # # There is origin (translation) and orientation arguments, allowing to transform all the 3d points once computed. # # without these transformation, it would look a little simpler: # pts=pack.revolutionSurfaceMeridians([[(pt[0],pt[1]+2e-3*theta) for pt in poly] for theta in thetas],thetas # pts = pack.revolutionSurfaceMeridians([[(pt[0], pt[1] + 1e-2 * theta) for pt in poly] for theta in thetas], thetas, origin=Vector3(0, -.05, .1), orientation=Quaternion((1, 1, 0), pi / 4)) # connect meridians to make surfaces # caps will close it at the beginning and the end # threshold will merge points closer than 1e-4; this is important: we want it to be closed for filling surf = pack.sweptPolylines2gtsSurface(pts, capStart=True, capEnd=True, threshold=1e-4) # add the surface as facets to the simulation, to make it visible O.bodies.append(pack.gtsSurface2Facets(surf, color=(1, 0, 1))) # now fill the inGtsSurface predicate constructed form the same surface with sphere packing generated by TriaxialTest # with given radius and standard deviation (see documentation of pack.randomDensePack) # # The memoizeDb will save resulting packing into given file and next time, if you run with the same
poly=((1e-2,5e-2),(5e-2,2e-2),(7e-2,-2e-2),(1e-2,-5e-2),(1e-2,5e-2)) # show us the meridian shape #pylab.plot(*zip(*poly)); pylab.xlim(xmin=0); pylab.grid(); pylab.title('Meridian of the revolution surface\n(close to continue)'); pylab.gca().set_aspect(aspect='equal',adjustable='box'); pylab.show() # angles at which we want this polygon to appear thetas=arange(0,pi/2,pi/24) # create 3d points from the 2d ones, turning the 2d meridian around the +y axis # for each angle, put the poly a little bit higher (+2e-3*theta); # this is just to demonstrate that you can do whatever here as long as the resulting # meridian has the same number of points # # There is origin (translation) and orientation arguments, allowing to transform all the 3d points once computed. # # without these transformation, it would look a little simpler: # pts=pack.revolutionSurfaceMeridians([[(pt[0],pt[1]+2e-3*theta) for pt in poly] for theta in thetas],thetas # pts=pack.revolutionSurfaceMeridians([[(pt[0],pt[1]+1e-2*theta) for pt in poly] for theta in thetas],thetas,origin=Vector3(0,-.05,.1),orientation=Quaternion((1,1,0),pi/4)) # connect meridians to make surfaces # caps will close it at the beginning and the end # threshold will merge points closer than 1e-4; this is important: we want it to be closed for filling surf=pack.sweptPolylines2gtsSurface(pts,capStart=True,capEnd=True,threshold=1e-4) # add the surface as facets to the simulation, to make it visible O.bodies.append(pack.gtsSurface2Facets(surf,color=(1,0,1))) # now fill the inGtsSurface predicate constructed form the same surface with sphere packing generated by TriaxialTest # with given radius and standard deviation (see documentation of pack.randomDensePack) # # The memoizeDb will save resulting packing into given file and next time, if you run with the same # parameters (or parameters that can be scaled to the same one), # it will load the packing instead of running the triaxial compaction again. # Try running for the second time to see the speed difference! memoizeDb='/tmp/gts-triax-packings.sqlite' O.bodies.append(pack.randomDensePack(pack.inGtsSurface(surf),radius=5e-3,rRelFuzz=1e-4,memoizeDb=memoizeDb))
#!/usr/bin/python # -*- coding: utf-8 -*- """This example demonstrates GTS (http://gts.sourceforge.net/) opportunities for creating surfaces VTU-files are created in /tmp directory after simulation. If you open those with paraview (or other VTK-based) program, you can create video, make screenshots etc.""" from numpy import linspace from yade import pack thetas=linspace(0,2*pi,num=16,endpoint=True) meridians=pack.revolutionSurfaceMeridians([[(3+rad*sin(th),10*rad+rad*cos(th)) for th in thetas] for rad in linspace(1,2,num=10)],linspace(0,pi,num=10)) surf=pack.sweptPolylines2gtsSurface(meridians+[[Vector3(5*sin(-th),-10+5*cos(-th),30) for th in thetas]]) O.bodies.append(pack.gtsSurface2Facets(surf)) sp=pack.SpherePack() sp.makeCloud(Vector3(-1,-9,30),Vector3(1,-13,32),.2,rRelFuzz=.3) O.bodies.append([sphere(c,r) for c,r in sp]) O.engines=[ ForceResetter(), InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Facet_Aabb()]), InteractionLoop( [Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()] ), NewtonIntegrator(gravity=(0,0,-9.81)), VTKRecorder(iterPeriod=100,recorders=['spheres','facets','colors'],fileName='/tmp/p1-') ] O.dt=PWaveTimeStep()