コード例 #1
0
 def init_first(self):
     # update the shape if select is present
     if self.select is not None:
         self.shape = (len(self.select), ) + self.shape[1:]
     # compute the number of dimensions, i.e. 3 for atoms
     self.ndim = 1
     for s in self.shape[1:]:
         self.ndim *= s
     # allocate working arrays
     self.last_poss = [
         np.zeros(self.shape, float) for i in range(self.mult)
     ]
     self.pos = np.zeros(self.shape, float)
     # prepare the hdf5 output file, if present.
     AnalysisHook.init_first(self)
     if self.outg is not None:
         for m in range(self.mult):
             self.outg.create_dataset('msd%03i' % (m + 1),
                                      shape=(0, ),
                                      maxshape=(None, ),
                                      dtype=float)
         self.outg.create_dataset('msdsums', data=self.msdsums)
         self.outg.create_dataset('msdcounters', data=self.msdcounters)
         self.outg.create_dataset('pars', shape=(2, ), dtype=float)
         self.outg.create_dataset('pars_error', shape=(2, ), dtype=float)
コード例 #2
0
ファイル: spectrum.py プロジェクト: molmod/yaff
 def init_first(self):
     AnalysisHook.init_first(self)
     if self.outg is not None:
         self.outg.create_dataset('amps', (self.ssize,), float)
         self.outg.create_dataset('freqs', (self.ssize,), float)
         self.outg.create_dataset('ac', (self.ssize,), float)
         self.outg.create_dataset('time', (self.ssize,), float)
コード例 #3
0
ファイル: spectrum.py プロジェクト: molmod/yaff
 def init_first(self):
     AnalysisHook.init_first(self)
     if self.outg is not None:
         self.outg.create_dataset("amps", (self.ssize,), float)
         self.outg.create_dataset("freqs", (self.ssize,), float)
         self.outg.create_dataset("ac", (self.ssize,), float)
         self.outg.create_dataset("time", (self.ssize,), float)
コード例 #4
0
ファイル: rdf.py プロジェクト: mcoolsce/yaff
 def init_first(self):
     '''Setup some work arrays'''
     # determine the number of atoms
     if self.select0 is None:
         self.natom0 = self.natom
     else:
         self.natom0 = len(self.select0)
     self.pos0 = np.zeros((self.natom0, 3), float)
     # the number of pairs
     if self.select1 is None:
         self.npair = (self.natom0 * (self.natom0 - 1)) // 2
         self.pos1 = None
     else:
         self.natom1 = len(self.select1)
         self.pos1 = np.zeros((self.natom1, 3), float)
         self.npair = self.natom0 * self.natom1
     # multiply the number of pairs by all images
     self.npair *= (1 + 2 * self.nimage)**3
     # Prepare the output
     self.work = np.zeros(self.npair, float)
     AnalysisHook.init_first(self)
     if self.outg is not None:
         self.outg.create_dataset('rdf', (self.nbin, ), float)
         self.outg.create_dataset('CN', (self.nbin, ), float)
         self.outg['d'] = self.d
         if self.pairs_sr is not None:
             self.outg.create_dataset('rdf_sr', (self.nbin, ), float)
コード例 #5
0
 def init_first(self):
     AnalysisHook.init_first(self)
     if self.outg is not None:
         self.outg.create_dataset('amps', (self.ssize, ), float)
         self.outg.create_dataset('freqs', (self.ssize, ), float)
         self.outg.create_dataset('ac', (self.ssize, ), float)
         self.outg.create_dataset('time', (self.ssize, ), float)
コード例 #6
0
ファイル: rdf.py プロジェクト: tovrstra/yaff
 def init_first(self):
     '''Setup some work arrays'''
     # determine the number of atoms
     if self.select0 is None:
         self.natom0 = self.natom
     else:
         self.natom0 = len(self.select0)
     self.pos0 = np.zeros((self.natom0, 3), float)
     # the number of pairs
     if self.select1 is None:
         self.npair = (self.natom0*(self.natom0-1))/2
         self.pos1 = None
     else:
         self.natom1 = len(self.select1)
         self.pos1 = np.zeros((self.natom1, 3), float)
         self.npair = self.natom0*self.natom1
     # multiply the number of pairs by all images
     self.npair *= (1 + 2*self.nimage)**3
     # Prepare the output
     self.work = np.zeros(self.npair, float)
     AnalysisHook.init_first(self)
     if self.outg is not None:
         self.outg.create_dataset('rdf', (self.nbin,), float)
         self.outg['d'] = self.d
         if self.pairs_sr is not None:
             self.outg.create_dataset('rdf_sr', (self.nbin,), float)
コード例 #7
0
ファイル: diffusion.py プロジェクト: molmod/yaff
    def __init__(self, f=None, start=0, end=-1, step=1, mult=20, select=None,
                 bsize=None, pospath='trajectory/pos', poskey='pos', outpath=None):
        """Computes mean-squared displacements and diffusion constants

           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start, end, step
                Optional arguments for the ``get_slice`` function. max_sample is
                not supported because the choice of the step argument is
                critical for a useful result.

           mult
                In the first place, the mean square displacement (MSD) between
                subsequent step is computed. The MSD is also computed between
                every, two, three, ..., until ``mult`` steps.

           select
                A list of atom indexes that are considered for the computation
                of the MSD's. If not given, all atoms are used.

           bsize
                If given, time intervals that coincide with the boundaries of
                the block size, will not be considered form the analysis. This
                is useful when there is a significant monte carlo move between
                subsequent blocks. If step > 1, the intervals will be left out
                if the overlap with boundaries of blocks with size bsize*step.

           pospath
                The path of the dataset that contains the time dependent data in
                the HDF5 file. The first axis of the array must be the time
                axis.

           poskey
                In case of an on-line analysis, this is the key of the state
                item that contains the data from which the MSD's are derived.

           outpath
                The output path for the MSD results. If not given, it defaults
                to '%s_diff' % path. If this path already exists, it will be
                removed first.

        """
        if bsize is not None and bsize < mult:
            raise ValueError('The bsize parameter must be larger than mult.')
        self.mult = mult
        self.select = select
        self.bsize = bsize
        self.msdsums = np.zeros(self.mult, float)
        self.msdcounters = np.zeros(self.mult, int)
        self.counter = 0
        if outpath is None:
            outpath = pospath + '_diff'
        analysis_inputs = {'pos': AnalysisInput(pospath, poskey)}
        AnalysisHook.__init__(self, f, start, end, None, step, analysis_inputs, outpath, True)
コード例 #8
0
ファイル: diffusion.py プロジェクト: molmod/yaff
 def init_first(self):
     # update the shape if select is present
     if self.select is not None:
         self.shape = (len(self.select),) + self.shape[1:]
     # compute the number of dimensions, i.e. 3 for atoms
     self.ndim = 1
     for s in self.shape[1:]:
         self.ndim *= s
     # allocate working arrays
     self.last_poss = [np.zeros(self.shape, float) for i in range(self.mult)]
     self.pos = np.zeros(self.shape, float)
     # prepare the hdf5 output file, if present.
     AnalysisHook.init_first(self)
     if self.outg is not None:
         for m in range(self.mult):
             self.outg.create_dataset('msd%03i' % (m+1), shape=(0,), maxshape=(None,), dtype=float)
         self.outg.create_dataset('msdsums', data=self.msdsums)
         self.outg.create_dataset('msdcounters', data=self.msdcounters)
         self.outg.create_dataset('pars', shape=(2,), dtype=float)
         self.outg.create_dataset('pars_error', shape=(2,), dtype=float)
コード例 #9
0
    def __init__(self,
                 f=None,
                 start=0,
                 end=-1,
                 step=1,
                 mult=20,
                 select=None,
                 bsize=None,
                 pospath='trajectory/pos',
                 poskey='pos',
                 outpath=None):
        """Computes mean-squared displacements and diffusion constants

           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start, end, step
                Optional arguments for the ``get_slice`` function. max_sample is
                not supported because the choice of the step argument is
                critical for a useful result.

           mult
                In the first place, the mean square displacement (MSD) between
                subsequent step is computed. The MSD is also computed between
                every, two, three, ..., until ``mult`` steps.

           select
                A list of atom indexes that are considered for the computation
                of the MSD's. If not given, all atoms are used.

           bsize
                If given, time intervals that coincide with the boundaries of
                the block size, will not be considered form the analysis. This
                is useful when there is a significant monte carlo move between
                subsequent blocks. If step > 1, the intervals will be left out
                if the overlap with boundaries of blocks with size bsize*step.

           pospath
                The path of the dataset that contains the time dependent data in
                the HDF5 file. The first axis of the array must be the time
                axis.

           poskey
                In case of an on-line analysis, this is the key of the state
                item that contains the data from which the MSD's are derived.

           outpath
                The output path for the MSD results. If not given, it defaults
                to '%s_diff' % path. If this path already exists, it will be
                removed first.

        """
        if bsize is not None and bsize < mult:
            raise ValueError('The bsize parameter must be larger than mult.')
        self.mult = mult
        self.select = select
        self.bsize = bsize
        self.msdsums = np.zeros(self.mult, float)
        self.msdcounters = np.zeros(self.mult, int)
        self.counter = 0
        if outpath is None:
            outpath = pospath + '_diff'
        analysis_inputs = {'pos': AnalysisInput(pospath, poskey)}
        AnalysisHook.__init__(self, f, start, end, None, step, analysis_inputs,
                              outpath, True)
コード例 #10
0
ファイル: spectrum.py プロジェクト: molmod/yaff
    def __init__(self, f=None, start=0, end=-1, step=1, bsize=4096, select=None,
                 path='trajectory/vel', key='vel', outpath=None, weights=None):
        """
           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start
                The first sample to be considered for analysis. This may be
                negative to indicate that the analysis should start from the
                -start last samples.

           end
                The last sample to be considered for analysis. This may be
                negative to indicate that the last -end sample should not be
                considered.

           step
                The spacing between the samples used for the analysis

           bsize
                The size of the blocks used for individual FFT calls.

           select
                A list of atom indexes that are considered for the computation
                of the spectrum. If not given, all atoms are used.

           path
                The path of the dataset that contains the time dependent data in
                the HDF5 file. The first axis of the array must be the time
                axis. The spectra are summed over the other axes.

           key
                In case of an on-line analysis, this is the key of the state
                item that contains the data from which the spectrum is derived.

           outpath
                The output path for the frequency computation in the HDF5 file.
                If not given, it defaults to '%s_spectrum' % path. If this path
                already exists, it will be removed first.

           weights
                If not given, the spectrum is just a simple sum of contributions
                from different time-dependent functions. If given, a linear
                combination is made based on these weights.

           The max_sample argument from get_slice is not used because the choice
           step value is an important parameter: it is best to choose step*bsize
           such that it coincides with a part of the trajectory in which the
           velocities (or other data) are continuous.

           The block size should be set such that it corresponds to a decent
           resolution on the frequency axis, i.e. 33356 fs of MD data
           corresponds to a resolution of about 1 cm^-1. The step size should be
           set such that the highest frequency is above the highest relevant
           frequency in the spectrum, e.g. a step of 10 fs corresponds to a
           frequency maximum of 3336 cm^-1. The total number of FFT's, i.e.
           length of the simulation divided by the block size multiplied by the
           number of time-dependent functions in the data, determines the noise
           reduction on the (the amplitude of) spectrum. If there is sufficient
           data to perform 10K FFT's, one should get a reasonably smooth
           spectrum.

           Depending on the FFT implementation in numpy, it may be interesting
           to tune the bsize argument. A power of 2 is typically a good choice.

           When f is None, or when the path does not exist in the HDF5 file, the
           class can be used as an on-line analysis hook for the iterative
           algorithms in yaff.sampling package. This means that the spectrum
           is built up as the iterative algorithm progresses. The end option is
           ignored for an on-line analysis.
        """
        self.bsize = bsize
        self.select = select
        self.weights = weights
        self.ssize = self.bsize//2+1 # the length of the spectrum array
        self.amps = np.zeros(self.ssize, float)
        self.nfft = 0 # the number of fft calls, for statistics
        if outpath is None:
            outpath = path + '_spectrum'
        analysis_inputs = {'signal': AnalysisInput(path, key)}
        AnalysisHook.__init__(self, f, start, end, None, step, analysis_inputs, outpath, True)
コード例 #11
0
ファイル: spectrum.py プロジェクト: molmod/yaff
 def init_online(self):
     AnalysisHook.init_online(self)
     self.ncollect = 0
コード例 #12
0
ファイル: rdf.py プロジェクト: mcoolsce/yaff
    def __init__(self,
                 rcut,
                 rspacing,
                 f=None,
                 start=0,
                 end=-1,
                 max_sample=None,
                 step=None,
                 select0=None,
                 select1=None,
                 pairs_sr=None,
                 nimage=0,
                 pospath='trajectory/pos',
                 poskey='pos',
                 cellpath=None,
                 cellkey=None,
                 outpath=None):
        """Computes a radial distribution function (RDF)

           **Argument:**

           rcut
                The cutoff for the RDF analysis. This should be lower than the
                spacing between the primitive cell planes, multiplied by (1+2*nimage).

           rspacing
                The width of the bins to build up the RDF.

           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start, end, max_sample, step
                arguments to setup the selection of time slices. See
                ``get_slice`` for more information.

           select0
                A list of atom indexes that are considered for the computation
                of the rdf. If not given, all atoms are used.

           select1
                A list of atom indexes that are needed to compute an RDF between
                two disjoint sets of atoms. (If there is some overlap between
                select0 and select1, an error will be raised.) If this is None,
                an 'internal' RDF will be computed for the atoms specified in
                select0.

           pairs_sr
                An array with short-range pairs of atoms (shape K x 2). When
                given, an additional RDFs is generated for the short-range pairs
                (rdf_sr).

           nimage
                The number of cell images to consider in the computation of the
                pair distances. By default, this is zero, meaning that only the
                minimum image convention is used.

           pospath
                The path of the dataset that contains the time dependent data in
                the HDF5 file. The first axis of the array must be the time
                axis. This is only needed for an off-line analysis

           poskey
                In case of an on-line analysis, this is the key of the state
                item that contains the data from which the RDF is derived.

           cellpath
                The path the time-dependent cell vector data. This is only
                needed when the cell parameters are variable and the analysis is
                off-line.

           cellkey
                The key of the stateitem that contains the cell vectors. This
                is only needed when the cell parameters are variable and the
                analysis is done on-line.

           outpath
                The output path for the frequency computation in the HDF5 file.
                If not given, it defaults to '%s_rdf' % path. If this path
                already exists, it will be removed first.

           When f is None, or when the path does not exist in the HDF5 file, the
           class can be used as an on-line analysis hook for the iterative
           algorithms in yaff.sampling package. This means that the RDF
           is built up as the itertive algorithm progresses. The end option is
           ignored and max_sample is not applicable to an on-line analysis.
        """
        if select0 is not None:
            if len(select0) != len(set(select0)):
                raise ValueError('No duplicates are allowed in select0')
            if len(select0) == 0:
                raise ValueError('select0 can not be an empty list')
        if select1 is not None:
            if len(select1) != len(set(select1)):
                raise ValueError('No duplicates are allowed in select1')
            if len(select1) == 0:
                raise ValueError('select1 can not be an empty list')
        if select0 is not None and select1 is not None and len(select0) + len(
                select1) != len(set(select0) | set(select1)):
            raise ValueError(
                'No overlap is allowed between select0 and select1. If you want to compute and RDF within a set of atoms, omit the select1 argument.'
            )
        if select0 is None and select1 is not None:
            raise ValueError('select1 can not be given without select0.')
        self.rcut = rcut
        self.rspacing = rspacing
        self.select0 = select0
        self.select1 = select1
        self.pairs_sr = self._process_pairs_sr(pairs_sr)
        self.nimage = nimage
        self.nbin = int(self.rcut / self.rspacing)
        self.bins = np.arange(self.nbin + 1) * self.rspacing
        self.d = self.bins[:-1] + 0.5 * self.rspacing
        self.rdf_sum = np.zeros(self.nbin, float)
        self.CN_sum = np.zeros(self.nbin, float)
        if self.pairs_sr is not None:
            self.rdf_sum_sr = np.zeros(self.nbin, float)
        self.nsample = 0
        if outpath is None:
            outpath = pospath + '_rdf'
        analysis_inputs = {
            'pos': AnalysisInput(pospath, poskey),
            'cell': AnalysisInput(cellpath, cellkey, False)
        }
        AnalysisHook.__init__(self, f, start, end, max_sample, step,
                              analysis_inputs, outpath, False)
コード例 #13
0
    def __init__(self,
                 f=None,
                 start=0,
                 end=-1,
                 step=1,
                 bsize=4096,
                 select=None,
                 path='trajectory/vel',
                 key='vel',
                 outpath=None,
                 weights=None):
        """
           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start
                The first sample to be considered for analysis. This may be
                negative to indicate that the analysis should start from the
                -start last samples.

           end
                The last sample to be considered for analysis. This may be
                negative to indicate that the last -end sample should not be
                considered.

           step
                The spacing between the samples used for the analysis

           bsize
                The size of the blocks used for individual FFT calls.

           select
                A list of atom indexes that are considered for the computation
                of the spectrum. If not given, all atoms are used.

           path
                The path of the dataset that contains the time dependent data in
                the HDF5 file. The first axis of the array must be the time
                axis. The spectra are summed over the other axes.

           key
                In case of an on-line analysis, this is the key of the state
                item that contains the data from which the spectrum is derived.

           outpath
                The output path for the frequency computation in the HDF5 file.
                If not given, it defaults to '%s_spectrum' % path. If this path
                already exists, it will be removed first.

           weights
                If not given, the spectrum is just a simple sum of contributions
                from different time-dependent functions. If given, a linear
                combination is made based on these weights.

           The max_sample argument from get_slice is not used because the choice
           step value is an important parameter: it is best to choose step*bsize
           such that it coincides with a part of the trajectory in which the
           velocities (or other data) are continuous.

           The block size should be set such that it corresponds to a decent
           resolution on the frequency axis, i.e. 33356 fs of MD data
           corresponds to a resolution of about 1 cm^-1. The step size should be
           set such that the highest frequency is above the highest relevant
           frequency in the spectrum, e.g. a step of 10 fs corresponds to a
           frequency maximum of 3336 cm^-1. The total number of FFT's, i.e.
           length of the simulation divided by the block size multiplied by the
           number of time-dependent functions in the data, determines the noise
           reduction on the (the amplitude of) spectrum. If there is sufficient
           data to perform 10K FFT's, one should get a reasonably smooth
           spectrum.

           Depending on the FFT implementation in numpy, it may be interesting
           to tune the bsize argument. A power of 2 is typically a good choice.

           When f is None, or when the path does not exist in the HDF5 file, the
           class can be used as an on-line analysis hook for the iterative
           algorithms in yaff.sampling package. This means that the spectrum
           is built up as the iterative algorithm progresses. The end option is
           ignored for an on-line analysis.
        """
        self.bsize = bsize
        self.select = select
        self.weights = weights
        self.ssize = self.bsize // 2 + 1  # the length of the spectrum array
        self.amps = np.zeros(self.ssize, float)
        self.nfft = 0  # the number of fft calls, for statistics
        if outpath is None:
            outpath = path + '_spectrum'
        analysis_inputs = {'signal': AnalysisInput(path, key)}
        AnalysisHook.__init__(self, f, start, end, None, step, analysis_inputs,
                              outpath, True)
コード例 #14
0
 def init_online(self):
     AnalysisHook.init_online(self)
     self.ncollect = 0
コード例 #15
0
ファイル: rdf.py プロジェクト: tovrstra/yaff
    def __init__(self, rcut, rspacing, f=None, start=0, end=-1, max_sample=None,
                 step=None, select0=None, select1=None, pairs_sr=None, nimage=0,
                 pospath='trajectory/pos', poskey='pos', cellpath=None,
                 cellkey=None, outpath=None):
        """Computes a radial distribution function (RDF)

           **Argument:**

           rcut
                The cutoff for the RDF analysis. This should be lower than the
                spacing between the primitive cell planes, multiplied by (1+2*nimage).

           rspacing
                The width of the bins to build up the RDF.

           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start, end, max_sample, step
                arguments to setup the selection of time slices. See
                ``get_slice`` for more information.

           select0
                A list of atom indexes that are considered for the computation
                of the rdf. If not given, all atoms are used.

           select1
                A list of atom indexes that are needed to compute an RDF between
                two disjoint sets of atoms. (If there is some overlap between
                select0 and select1, an error will be raised.) If this is None,
                an 'internal' RDF will be computed for the atoms specified in
                select0.

           pairs_sr
                An array with short-range pairs of atoms (shape K x 2). When
                given, an additional RDFs is generated for the short-range pairs
                (rdf_sr).

           nimage
                The number of cell images to consider in the computation of the
                pair distances. By default, this is zero, meaning that only the
                minimum image convention is used.

           pospath
                The path of the dataset that contains the time dependent data in
                the HDF5 file. The first axis of the array must be the time
                axis. This is only needed for an off-line analysis

           poskey
                In case of an on-line analysis, this is the key of the state
                item that contains the data from which the RDF is derived.

           cellpath
                The path the time-dependent cell vector data. This is only
                needed when the cell parameters are variable and the analysis is
                off-line.

           cellkey
                The key of the stateitem that contains the cell vectors. This
                is only needed when the cell parameters are variable and the
                analysis is done on-line.

           outpath
                The output path for the frequency computation in the HDF5 file.
                If not given, it defaults to '%s_rdf' % path. If this path
                already exists, it will be removed first.

           When f is None, or when the path does not exist in the HDF5 file, the
           class can be used as an on-line analysis hook for the iterative
           algorithms in yaff.sampling package. This means that the RDF
           is built up as the itertive algorithm progresses. The end option is
           ignored and max_sample is not applicable to an on-line analysis.
        """
        if select0 is not None:
            if len(select0) != len(set(select0)):
                raise ValueError('No duplicates are allowed in select0')
            if len(select0) == 0:
                raise ValueError('select0 can not be an empty list')
        if select1 is not None:
            if len(select1) != len(set(select1)):
                raise ValueError('No duplicates are allowed in select1')
            if len(select1) == 0:
                raise ValueError('select1 can not be an empty list')
        if select0 is not None and select1 is not None and len(select0) + len(select1) != len(set(select0) | set(select1)):
            raise ValueError('No overlap is allowed between select0 and select1. If you want to compute and RDF within a set of atoms, omit the select1 argument.')
        if select0 is None and select1 is not None:
            raise ValueError('select1 can not be given without select0.')
        self.rcut = rcut
        self.rspacing = rspacing
        self.select0 = select0
        self.select1 = select1
        self.pairs_sr = self._process_pairs_sr(pairs_sr)
        self.nimage = nimage
        self.nbin = int(self.rcut/self.rspacing)
        self.bins = np.arange(self.nbin+1)*self.rspacing
        self.d = self.bins[:-1] + 0.5*self.rspacing
        self.rdf_sum = np.zeros(self.nbin, float)
        if self.pairs_sr is not None:
            self.rdf_sum_sr = np.zeros(self.nbin, float)
        self.nsample = 0
        if outpath is None:
            outpath = pospath + '_rdf'
        analysis_inputs = {'pos': AnalysisInput(pospath, poskey), 'cell': AnalysisInput(cellpath, cellkey, False)}
        AnalysisHook.__init__(self, f, start, end, max_sample, step, analysis_inputs, outpath, False)