コード例 #1
0
def plot_density(f, fn_png='density.png', **kwargs):
    """Make a plot of the mass density as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    mass = f['system/masses'][:].sum()
    vol = f['trajectory/volume'][start:end:step]
    rho = mass/vol/log.density.conversion
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, rho, 'k-')
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Density [%s]' % log.density.notation)
    pt.savefig(fn_png)
コード例 #2
0
def plot_temperature(f, fn_png='temperature.png', **kwargs):
    """Make a plot of the temperature as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    temp = f['trajectory/temp'][start:end:step]
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, temp, 'k-')
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Temperature [K]')
    pt.savefig(fn_png)
コード例 #3
0
def plot_temperature(f, fn_png='temperature.png', **kwargs):
    """Make a plot of the temperature as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    temp = f['trajectory/temp'][start:end:step]
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, temp, 'k-')
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Temperature [K]')
    pt.savefig(fn_png)
コード例 #4
0
def plot_density(f, fn_png='density.png', **kwargs):
    """Make a plot of the mass density as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    mass = f['system/masses'][:].sum()
    vol = f['trajectory/volume'][start:end:step]
    rho = mass / vol / log.density.conversion
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, rho, 'k-')
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Density [%s]' % log.density.notation)
    pt.savefig(fn_png)
コード例 #5
0
    def __init__(self,
                 f=None,
                 start=0,
                 end=-1,
                 max_sample=None,
                 step=None,
                 analysis_inputs={},
                 outpath='trajectory/noname',
                 do_timestep=False):
        """Base class for the analysis hooks.

           Analysis hooks in Yaff support both off-line and on-line analysis.

           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start, end, max_sample, step
                Optional arguments for the ``get_slice`` function.

           analysis_inputs
                A list with AnalysisInput instances

           outpath
                The output path for the analysis.

           do_timestep
                When True, a self.timestep attribute will be initialized as
                early as possible.
        """
        self.f = f
        self.start, self.end, self.step = get_slice(self.f, start, end,
                                                    max_sample, step)
        self.analysis_inputs = analysis_inputs
        self.outpath = outpath
        self.do_timestep = do_timestep

        self.online = self.f is None
        if not self.online:
            for ai in self.analysis_inputs.itervalues():
                self.online |= (ai.path is None and ai.required)
                self.online |= not (ai.path is None or ai.path in self.f)
        if not self.online:
            self.compute_offline()
        else:
            self.init_online()
コード例 #6
0
def plot_epot_contribs(f, fn_png='epot_contribs.png', size=1.0, **kwargs):
    """Make a plot of the contributions to the potential energy as f. of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    epot = f['trajectory/epot'][start:end:step].copy() / log.energy.conversion
    epot -= epot[0]
    epot_contribs = []
    for i, name in enumerate(f['trajectory'].attrs['epot_contrib_names']):
        contrib = f['trajectory']['epot_contribs'][
            start:end:step, i].copy() / log.energy.conversion
        contrib -= contrib[0]
        epot_contribs.append((name, contrib))
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, epot, 'k-', label='_nolegend_', lw=2)
    for name, epot_contrib in epot_contribs:
        pt.plot(time, epot_contrib, label=name)
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Energy [%s]' % log.energy.notation)
    pt.legend(loc=0)
    F = pt.gcf()
    DefaultSize = F.get_size_inches()
    F.set_size_inches(DefaultSize[0] * size, DefaultSize[1] * size)
    pt.savefig(fn_png)
コード例 #7
0
def plot_epot_contribs(f, fn_png='epot_contribs.png', size=1.0, **kwargs):
    """Make a plot of the contributions to the potential energy as f. of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    epot = f['trajectory/epot'][start:end:step].copy()/log.energy.conversion
    epot -= epot[0]
    epot_contribs = []
    for i, name in enumerate(f['trajectory'].attrs['epot_contrib_names']):
        contrib = f['trajectory']['epot_contribs'][start:end:step,i].copy()/log.energy.conversion
        contrib -= contrib[0]
        epot_contribs.append((name, contrib))
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, epot, 'k-', label='_nolegend_', lw=2)
    for name, epot_contrib in epot_contribs:
        pt.plot(time, epot_contrib, label=name)
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Energy [%s]' % log.energy.notation)
    pt.legend(loc=0)
    F=pt.gcf()
    DefaultSize = F.get_size_inches()
    F.set_size_inches(DefaultSize[0]*size, DefaultSize[1]*size)
    pt.savefig(fn_png)
コード例 #8
0
def plot_pressure(f, fn_png='pressure.png', window=1, **kwargs):
    """Make a plot of the pressure as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to
       window
            The window over which the pressure is averaged

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    press = f['trajectory/press'][start:end:step]
    time, tlabel = get_time(f, start, end, step)

    press_av = np.zeros(len(press) + 1 - window)
    time_av = np.zeros(len(press) + 1 - window)
    for i in range(len(press_av)):
        press_av[i] = press[i:i + window].sum() / window
        time_av[i] = time[i]
    pt.clf()
    pt.plot(time_av,
            press_av / (1e9 * pascal),
            'k-',
            label='Sim (%.3f MPa)' % (press.mean() / (1e6 * pascal)))
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('pressure [GPA]')
    pt.legend(loc=0)
    pt.savefig(fn_png)
コード例 #9
0
ファイル: hook.py プロジェクト: tovrstra/yaff
    def __init__(self, f=None, start=0, end=-1, max_sample=None, step=None,
                 analysis_inputs={}, outpath='trajectory/noname', do_timestep=False):
        """Base class for the ansysis hooks.

           Analysis hooks in Yaff support both off-line and on-line analysis.

           **Optional arguments:**

           f
                An h5.File instance containing the trajectory data. If ``f``
                is not given, or it does not contain the dataset referred to
                with the ``path`` argument, an on-line analysis is carried out.

           start, end, max_sample, step
                Optional arguments for the ``get_slice`` function.

           analysis_inputs
                A list with AnalysisInput instances

           outpath
                The output path for the analysis.

           do_timestep
                When True, a self.timestep attribute will be initialized as
                early as possible.
        """
        self.f = f
        self.start, self.end, self.step = get_slice(self.f, start, end, max_sample, step)
        self.analysis_inputs = analysis_inputs
        self.outpath = outpath
        self.do_timestep = do_timestep

        self.online = self.f is None
        if not self.online:
            for ai in self.analysis_inputs.itervalues():
                self.online |= (ai.path is None and ai.required)
                self.online |= not (ai.path is None or ai.path in self.f)
        if not self.online:
            self.compute_offline()
        else:
            self.init_online()
コード例 #10
0
def plot_energies2(f, fn_png='energies.png', **kwargs):
    """Make a plot of the potential, total and conserved energy as f. of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    epot = f['trajectory/epot'][start:end:step] / log.energy.conversion
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.rc('text', usetex=True)
    pt.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Paladino']})
    pt.rcParams['font.family'] = 'Paladino'
    pt.plot(time, epot, 'g-', label=r'$E_{pot}$')
    if 'trajectory/etot' in f:
        etot = f['trajectory/ekin'][start:end:step] / log.energy.conversion
        pt.plot(time, etot, 'r-', label=r'$E_{kin}$')
    if 'trajectory/econs' in f:
        econs = f['trajectory/etot'][start:end:step] / log.energy.conversion
        pt.plot(time, econs, 'k-', label=r'$E_{tot}$')
    pt.xlim(time[0], time[-1])
    pt.xlabel(r'%s' % tlabel)
    pt.ylabel(r'Energie [%s]' % log.energy.notation)
    legend = pt.legend(loc=0)
    pt.savefig(fn_png)
コード例 #11
0
def plot_energies2(f, fn_png='energies.png', **kwargs):
    """Make a plot of the potential, total and conserved energy as f. of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    epot = f['trajectory/epot'][start:end:step]/log.energy.conversion
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.rc('text', usetex=True)
    pt.rc('font',**{'family':'sans-serif','sans-serif':['Paladino']})
    pt.rcParams['font.family'] = 'Paladino'
    pt.plot(time, epot, 'g-', label=r'$E_{pot}$')
    if 'trajectory/etot' in f:
        etot = f['trajectory/ekin'][start:end:step]/log.energy.conversion
        pt.plot(time, etot, 'r-', label=r'$E_{kin}$')
    if 'trajectory/econs' in f:
        econs = f['trajectory/etot'][start:end:step]/log.energy.conversion
        pt.plot(time, econs, 'k-', label=r'$E_{tot}$')
    pt.xlim(time[0], time[-1])
    pt.xlabel(r'%s' % tlabel )
    pt.ylabel(r'Energie [%s]' % log.energy.notation)
    legend = pt.legend(loc=0)
    pt.savefig(fn_png)
コード例 #12
0
def plot_pressure(f, fn_png='pressure.png', window = 1, **kwargs):
    """Make a plot of the pressure as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to
       window
            The window over which the pressure is averaged

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger. This
       type of plot is essential for checking the sanity of a simulation.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    press = f['trajectory/press'][start:end:step]
    time, tlabel = get_time(f, start, end, step)

    press_av = np.zeros(len(press)+1-window)
    time_av = np.zeros(len(press)+1-window)
    for i in xrange(len(press_av)):
        press_av[i] = press[i:i+window].sum()/window
        time_av[i] = time[i]
    pt.clf()
    pt.plot(time_av, press_av/(1e9*pascal), 'k-',label='Sim (%.3f MPa)' % (press.mean()/(1e6*pascal)))
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('pressure [GPA]')
    pt.legend(loc=0)
    pt.savefig(fn_png)
コード例 #13
0
def plot_energies(f, fn_png='energies.png', **kwargs):
    """Make a plot of the potential, total and conserved energy as f. of time

**Arguments:**

f
An h5.File instance containing the trajectory data.

**Optional arguments:**

fn_png
The png file to write the figure to

The optional arguments of the ``get_slice`` function are also accepted in
the form of keyword arguments.

The units for making the plot are taken from the yaff screen logger. This
type of plot is essential for checking the sanity of a simulation.
"""
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    epot = f['trajectory/epot'][start:end:step] / log.energy.conversion
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, epot, 'k-', label='E_pot')
    if 'trajectory/etot' in f:
        etot = f['trajectory/etot'][start:end:step] / log.energy.conversion
        pt.plot(time, etot, 'r-', label='E_tot')
    if 'trajectory/econs' in f:
        econs = f['trajectory/econs'][start:end:step] / log.energy.conversion
        pt.plot(time, econs, 'g-', label='E_cons')
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Energy [%s]' % log.energy.notation)
    pt.legend(loc=0)
    pt.savefig(fn_png)
コード例 #14
0
def plot_energies(f, fn_png='energies.png', **kwargs):
    """Make a plot of the potential, total and conserved energy as f. of time

**Arguments:**

f
An h5.File instance containing the trajectory data.

**Optional arguments:**

fn_png
The png file to write the figure to

The optional arguments of the ``get_slice`` function are also accepted in
the form of keyword arguments.

The units for making the plot are taken from the yaff screen logger. This
type of plot is essential for checking the sanity of a simulation.
"""
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    epot = f['trajectory/epot'][start:end:step]/log.energy.conversion
    time, tlabel = get_time(f, start, end, step)

    pt.clf()
    pt.plot(time, epot, 'k-', label='E_pot')
    if 'trajectory/etot' in f:
        etot = f['trajectory/etot'][start:end:step]/log.energy.conversion
        pt.plot(time, etot, 'r-', label='E_tot')
    if 'trajectory/econs' in f:
        econs = f['trajectory/econs'][start:end:step]/log.energy.conversion
        pt.plot(time, econs, 'g-', label='E_cons')
    pt.xlim(time[0], time[-1])
    pt.xlabel(tlabel)
    pt.ylabel('Energy [%s]' % log.energy.notation)
    pt.legend(loc=0)
    pt.savefig(fn_png)
コード例 #15
0
def plot_dihedral(f,
                  index,
                  fn_png='dihedral.png',
                  n_int=1,
                  xlim=None,
                  ymax=None,
                  angle_lim=None,
                  angle_shift=False,
                  oriented=False,
                  **kwargs):
    """Make a plot of the angle between the given atoms as f. of time

    **Arguments:**

     f
        An h5.File instance containing the trajectory data

     index
        A list containing the four indices of the atoms as in the h5 file

   **Optional arguments:**

   fn_png
        The png file to write the figure to

    n_int
        The number of equidistant intervals considered in the FFT and histogram

    xlim
        Frequency interval of interest

    ymax
        Maximal intensity of interest in the FFT

    angle_lim
        Angle interval of interest in the histogram

    angle_shift
        If True, all angles are shifted towards positive values

    oriented
        If True, a distinction is made between positive and negative angles
    """

    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    start, end, step = get_slice(f, **kwargs)

    n_angles = index.shape[0]
    n_atoms = index.shape[1]
    n_dim = 3
    if n_atoms != 4:
        raise AssertionError(n_atoms + ' atoms selected instead of 4')

    # construct the working arrays
    time = f['trajectory/time'][start:end:step]
    atom_vec = np.zeros((len(time), n_angles, n_dim, 3))
    plane_vec = np.zeros((len(time), n_angles, n_dim, 2))
    angle = np.zeros((len(time), n_angles))

    pt.clf()
    comap = pt.cm.get_cmap(name='hsv')
    # calculate the relative positions
    for i in range(n_angles):
        for j in range(3):
            atom_vec[:, i, :, j] = f['trajectory/pos'][start:end:step, index[
                i, j + 1], :] - f['trajectory/pos'][start:end:step,
                                                    index[i, j], :]
        # calculate the plane normals
        for j in range(2):
            plane_vec[:, i, :, j] = np.cross(atom_vec[:, i, :, j],
                                             atom_vec[:, i, :, j + 1])
        angle[:, i] = np.arccos(
            (plane_vec[:, i, :, 0] * plane_vec[:, i, :, 1]).sum(axis=1) /
            np.sqrt(
                (plane_vec[:, i, :, 0]**2).sum(axis=1) *
                (plane_vec[:, i, :, 1]**2).sum(axis=1))) / log.angle.conversion
        if oriented:
            # determine the orientation of the cross product of both planes wrt the mutual axis
            sign = np.sign(
                (np.cross(plane_vec[:, i, :, 0], plane_vec[:, i, :, 1]) *
                 atom_vec[:, i, :, 1]).sum(axis=1))
            angle[:, i] *= sign
            for j in range(len(time)):
                if angle_shift and angle[j, i] < 0: angle[j, i] += 360

        # plot the raw time signal
        pt.plot(time / (1e-12 * second),
                angle[:, i],
                color=comap(1.0 * i / n_angles))
    pt.xlim([time[0] / (1e-12 * second), time[-1] / (1e-12 * second)])
    pt.xlabel('Time [ps]')
    pt.ylabel('Dihedral angle [%s]' % log.angle.notation)
    pt.savefig('time_' + str(fn_png))

    # calculate the fourier transform
    loss = len(time) % n_int
    time_int = time[0:len(time) - loss].reshape(n_int, -1)
    angle_int = angle.reshape(n_int, -1, n_angles)
    timestep = time[1] - time[0]
    bsize = len(time) // n_int
    ssize = bsize // 2 + 1
    freq_fft = np.arange(ssize) / (timestep * bsize)
    angle_int_fft = np.zeros((n_int, len(freq_fft)))

    for i in range(n_int):
        av = angle_int[i, :, :].mean()
        for j in range(n_angles):
            angle_int_fft[i, :] += abs(np.fft.rfft(angle_int[i, :, j] - av))**2

    # plot the fourier transform
    pt.clf()
    if n_int == 1:
        pt.plot(freq_fft / lightspeed * centimeter, angle_int_fft[0, :], 'k-')
    else:
        for i in range(n_int):
            pt.plot(freq_fft / lightspeed * centimeter,
                    angle_int_fft[i, :],
                    color=comap(1.0 * i / n_int),
                    label=r'[%0.f ps, %0.f ps]' %
                    (time_int[i, 0] / (1e-12 * second), time_int[i, -1] /
                     (1e-12 * second)))
        pt.legend(loc=0)
    pt.xlabel('Frequency [cm^-1]')
    pt.ylabel('Intensity [au]')
    if xlim is not None:
        pt.xlim(xlim[0], xlim[1])
    if ymax is not None:
        pt.ylim(ymax=ymax)
    pt.savefig('fft_' + str(fn_png))

    # setup the angle grid and make the histogram
    angle_min = 0
    angle_max = 180
    if oriented: angle_min = -180
    if angle_shift:
        angle_min = 0
        angle_max = 360
    angle0 = angle.mean()
    sigma = np.std(angle)
    angle_step = sigma / 25.0
    angle_grid = np.arange(angle_min, angle_max, angle_step)
    # plot the different probability distributions
    pt.clf()
    for i in range(n_int):
        # make the histogram
        counts = 0
        for j in range(n_angles):
            counts += np.histogram(angle_int[i, :, j].ravel(),
                                   bins=angle_grid)[0]
        total = float(time_int.shape[1] * n_angles)
        emp_sys_pdf = counts / total
        x_sys = angle_grid[:-1]

        # plot the histogram
        if n_int == 1:
            pt.plot(x_sys, emp_sys_pdf, color='k')
        else:
            pt.plot(x_sys,
                    emp_sys_pdf,
                    color=comap(1.0 * i / n_int),
                    label=r'[%0.f ps, %0.f ps]' %
                    (time_int[i, 0] / (1e-12 * second), time_int[i, -1] /
                     (1e-12 * second)))
        pt.ylim(ymin=0)
        pt.xlim(x_sys[0], x_sys[-1])
        pt.ylabel('PDF')
        pt.xlabel('Dihedral angle [%s]' % log.angle.notation)
        pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.legend(loc=0)
    if angle_lim is not None:
        pt.xlim(angle_lim[0], angle_lim[1])
    pt.savefig('dist_' + str(fn_png))
コード例 #16
0
def plot_cell_pars(f, fn_png='cell_pars.png', **kwargs):
    """Make a plot of the cell parameters as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    cell = f['trajectory/cell'][start:end:step] / log.length.conversion
    lengths = np.sqrt((cell**2).sum(axis=2))
    time, tlabel = get_time(f, start, end, step)
    nvec = lengths.shape[1]

    def get_angle(i0, i1):
        return np.arccos(
            np.clip((cell[:, i0] * cell[:, i1]).sum(axis=1) / lengths[:, i0] /
                    lengths[:, i1], -1, 1)) / log.angle.conversion

    pt.clf()

    if nvec == 3:
        pt.subplot(2, 1, 1)
        pt.plot(time, lengths[:, 0], 'r-', label='a')
        pt.plot(time, lengths[:, 1], 'g-', label='b')
        pt.plot(time, lengths[:, 2], 'b-', label='c')
        pt.xlim(time[0], time[-1])
        pt.ylabel('Lengths [%s]' % log.length.notation)
        pt.legend(loc=0)

        alpha = get_angle(1, 2)
        beta = get_angle(2, 0)
        gamma = get_angle(0, 1)
        pt.subplot(2, 1, 2)
        pt.plot(time, alpha, 'r-', label='alpha')
        pt.plot(time, beta, 'g-', label='beta')
        pt.plot(time, gamma, 'b-', label='gamma')
        pt.xlim(time[0], time[-1])
        pt.xlabel(tlabel)
        pt.ylabel('Angles [%s]' % log.angle.notation)
        pt.legend(loc=0)
    elif nvec == 2:
        pt.subplot(2, 1, 1)
        pt.plot(time, lengths[:, 0], 'r-', label='a')
        pt.plot(time, lengths[:, 1], 'g-', label='b')
        pt.xlim(time[0], time[-1])
        pt.ylabel('Lengths [%s]' % log.length.notation)
        pt.legend(loc=0)

        gamma = get_angle(0, 1)
        pt.subplot(2, 1, 2)
        pt.plot(time, gamma, 'b-', label='gamma')
        pt.xlim(time[0], time[-1])
        pt.xlabel(tlabel)
        pt.ylabel('Angle [%s]' % log.angle.notation)
        pt.legend(loc=0)
    elif nvec == 1:
        pt.plot(time, lengths[:, 0], 'k-')
        pt.xlim(time[0], time[-1])
        pt.xlabel(tlabel)
        pt.ylabel('Lengths [%s]' % log.length.notation)
    else:
        raise ValueError(
            'Can not plot cell parameters if the system is not periodic.')

    pt.savefig(fn_png)
コード例 #17
0
def plot_temp_dist(f, fn_png='temp_dist.png', temp=None, ndof=None, select=None, **kwargs):
    """Plots the distribution of the weighted atomic velocities

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       select
            A list of atom indexes that should be considered for the analysis.
            By default, information from all atoms is combined.

       temp
            The (expected) average temperature used to plot the theoretical
            distributions.

       ndof
            The number of degrees of freedom. If not specified, this is chosen
            to be 3*(number of atoms)

       start, end, step, max_sample
           The optional arguments of the ``get_slice`` function are also
           accepted in the form of keyword arguments.

       This type of plot is essential for checking the sanity of a simulation.
       The empirical cumulative distribution is plotted and overlayed with the
       analytical cumulative distribution one would expect if the data were
       taken from an NVT ensemble.

       This type of plot reveals issues with parts that are relatively cold or
       warm compared to the total average temperature. This helps to determine
       (the lack of) thermal equilibrium.
    """
    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    from scipy.stats import chi2
    start, end, step = get_slice(f, **kwargs)

    # Make an array with the weights used to compute the temperature
    if select is None:
        weights = np.array(f['system/masses'])/boltzmann
    else:
        weights = np.array(f['system/masses'])[select]/boltzmann

    if select is None:
        # just load the temperatures from the output file
        temps = f['trajectory/temp'][start:end:step]
    else:
        # compute the temperatures of the subsystem
        temps = []
        for i in xrange(start, end, step):
             temp = ((f['trajectory/vel'][i,select]**2).mean(axis=1)*weights).mean()
             temps.append(temp)
        temps = np.array(temps)

    if temp is None:
        temp = temps.mean()


    # A) SYSTEM
    if select is None:
        natom = f['system/numbers'].shape[0]
    else:
        natom = 3*len(select)
    if ndof is None:
        ndof = f['trajectory'].attrs.get('ndof')
    if ndof is None:
        ndof = 3*natom
    do_atom = ndof == 3*natom
    sigma = temp*np.sqrt(2.0/ndof)
    temp_step = sigma/5

    # setup the temperature grid and make the histogram
    temp_grid = np.arange(max(0, temp-3*sigma), temp+5*sigma, temp_step)
    counts = np.histogram(temps.ravel(), bins=temp_grid)[0]
    total = float(len(temps))

    # transform into empirical pdf and cdf
    emp_sys_pdf = counts/total
    emp_sys_cdf = counts.cumsum()/total

    # the analytical form
    rv = chi2(ndof, 0, temp/ndof)
    x_sys = temp_grid[:-1]
    ana_sys_pdf = rv.cdf(temp_grid[1:]) - rv.cdf(temp_grid[:-1])
    ana_sys_cdf = rv.cdf(temp_grid[1:])

    if do_atom:
        # B) ATOMS
        temp_step = temp/10

        # setup the temperature grid
        temp_grid = np.arange(0, temp*5 + 0.5*temp_step, temp_step)

        # build up the distribution for the atoms
        counts = np.zeros(len(temp_grid)-1, int)
        total = 0.0
        for i in xrange(start, end, step):
            if select is None:
                atom_temps = (f['trajectory/vel'][i]**2).mean(axis=1)*weights
            else:
                atom_temps = (f['trajectory/vel'][i,select]**2).mean(axis=1)*weights
            counts += np.histogram(atom_temps.ravel(), bins=temp_grid)[0]
            total += atom_temps.size


        # transform into empirical pdf and cdf
        emp_atom_pdf = counts/total
        emp_atom_cdf = counts.cumsum()/total

        # the analytical form
        rv = chi2(3, 0, temp/3)
        x_atom = temp_grid[:-1]
        ana_atom_pdf = rv.cdf(temp_grid[1:]) - rv.cdf(temp_grid[:-1])
        ana_atom_cdf = rv.cdf(temp_grid[1:])

    # C) Make the plots
    pt.clf()
    xconv = log.temperature.conversion

    pt.subplot(2, 1+do_atom, 1)
    pt.title('System (ndof=%i)' % ndof)
    scale = 1/emp_sys_pdf.max()
    pt.plot(x_sys/xconv, emp_sys_pdf*scale, 'k-', drawstyle='steps-pre', label='Sim (%.0f)' % (temps.mean()))
    pt.plot(x_sys/xconv, ana_sys_pdf*scale, 'r-', drawstyle='steps-pre', label='Exact (%.0f)' % temp)
    pt.axvline(temp, color='k', ls='--')
    pt.ylim(ymin=0)
    pt.xlim(x_sys[0]/xconv, x_sys[-1]/xconv)
    pt.ylabel('Rescaled PDF')
    pt.legend(loc=0)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

    pt.subplot(2, 1+do_atom, 2+do_atom)
    pt.plot(x_sys/xconv, emp_sys_cdf, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys/xconv, ana_sys_cdf, 'r-', drawstyle='steps-pre')
    pt.axvline(temp, color='k', ls='--')
    pt.xlim(x_sys[0]/xconv, x_sys[-1]/xconv)
    pt.ylim(0, 1)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.ylabel('CDF')
    pt.xlabel('Temperature [%s]' % log.temperature.notation)

    if do_atom:
        pt.subplot(2, 2, 2)
        pt.title('Atom (ndof=3)')
        scale = 1/emp_atom_pdf.max()
        pt.plot(x_atom/xconv, emp_atom_pdf*scale, 'k-', drawstyle='steps-pre')
        pt.plot(x_atom/xconv, ana_atom_pdf*scale, 'r-', drawstyle='steps-pre')
        pt.axvline(temp, color='k', ls='--')
        pt.xlim(x_atom[0]/xconv, x_atom[-1]/xconv)
        pt.ylim(ymin=0)
        pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

        pt.subplot(2, 2, 4)
        pt.plot(x_atom/xconv, emp_atom_cdf, 'k-', drawstyle='steps-pre')
        pt.plot(x_atom/xconv, ana_atom_cdf, 'r-', drawstyle='steps-pre')
        pt.axvline(temp, color='k', ls='--')
        pt.xlim(x_atom[0]/xconv, x_atom[-1]/xconv)
        pt.ylim(0, 1)
        pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
        pt.xlabel('Temperature [%s]' % log.temperature.notation)

    pt.savefig(fn_png)
コード例 #18
0
def plot_volume_dist(f,
                     fn_png='volume_dist.png',
                     temp=None,
                     press=None,
                     **kwargs):
    """Plots the distribution of the volume

        **Arguments:**

        f
            An h5.File instance containing the trajectory data.


        **Optional arguments:**

        fn_png
            The png file to write the figure to

        temp
            The (expected) average temperature used to plot the theoretical
            distributions.

        press
            The (expected) average pressure used to plot the theoretical
            distributions.

        start, end, step, max_sample
           The optional arguments of the ``get_slice`` function are also
           accepted in the form of keyword arguments.

       This type of plot is essential for checking the sanity of a simulation.
       The empirical cumulative distribution is plotted and overlayed with the
       analytical cumulative distribution one would expect if the data were
       taken from an NPT ensemble.
    """
    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    from scipy.stats import chi2
    start, end, step = get_slice(f, **kwargs)

    if temp is None:
        # Make an array of the temperature
        temps = f['trajectory/temp'][start:end:step]
        temp = temps.mean()

    if press is None:
        # Make an array of the pressure
        presss = f['trajectory/press'][start:end:step]
        press = presss.mean()

    # Make an array of the cell volume
    vols = f['trajectory/volume'][start:end:step]
    vol0 = vols.mean()

    sigma = np.std(vols)
    vol_step = sigma / 5

    # setup the volume grid and make the histogram
    vol_grid = np.arange(vol0 - 3 * sigma, vol0 + 3 * sigma, vol_step)
    counts = np.histogram(vols.ravel(), bins=vol_grid)[0]
    total = float(len(vols))

    # transform into empirical pdf and cdf
    emp_sys_pdf = counts / total
    emp_sys_cdf = counts.cumsum() / total

    # the analytical form
    #rv = chi2(2, 0, vol0/2)
    rv = chi2(2, vol0 - boltzmann * temp / press, boltzmann * temp / press / 2)
    x_sys = vol_grid[:-1]
    ana_sys_pdf = rv.cdf(vol_grid[1:]) - rv.cdf(vol_grid[:-1])
    ana_sys_cdf = rv.cdf(vol_grid[1:])

    # C) Make the plots
    pt.clf()
    xconv = angstrom**3

    pt.subplot(2, 1, 1)
    pt.title('System')
    scale = 1 / emp_sys_pdf.max()
    pt.plot(x_sys / xconv, emp_sys_pdf * scale, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys / xconv, ana_sys_pdf * scale, 'r-', drawstyle='steps-pre')
    pt.axvline(vol0 / xconv, color='k', ls='--')
    pt.ylim(ymin=0)
    pt.xlim(x_sys[0] / xconv, x_sys[-1] / xconv)
    pt.ylabel('Rescaled PDF')
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

    pt.subplot(2, 1, 2)
    pt.plot(x_sys / xconv, emp_sys_cdf, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys / xconv, ana_sys_cdf, 'r-', drawstyle='steps-pre')
    pt.axvline(vol0 / xconv, color='k', ls='--')
    pt.xlim(x_sys[0] / xconv, x_sys[-1] / xconv)
    pt.ylim(0, 1)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.ylabel('CDF')
    pt.xlabel('Volume [A^3]')

    pt.savefig(fn_png)
コード例 #19
0
def plot_press_dist(f,
                    temp,
                    fn_png='press_dist.png',
                    press=None,
                    ndof=None,
                    select=None,
                    **kwargs):
    """Plots the distribution of the internal pressure

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       temp
            The (expected) average temperature used to plot the theoretical
            distributions.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       select
            A list of atom indexes that should be considered for the analysis.
            By default, information from all atoms is combined.

       press
            The (expected) average pressure used to plot the theoretical
            distributions.

       ndof
            The number of degrees of freedom. If not specified, this is chosen
            to be 3*(number of atoms)

       start, end, step, max_sample
           The optional arguments of the ``get_slice`` function are also
           accepted in the form of keyword arguments.

       This type of plot is essential for checking the sanity of a simulation.
       The empirical cumulative distribution is plotted and overlayed with the
       analytical cumulative distribution one would expect if the data were
       taken from an NPT ensemble.
    """
    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    from scipy.stats import chi2
    start, end, step = get_slice(f, **kwargs)

    # Make an array with the weights used to compute the temperature
    if select is None:
        weights = np.array(f['system/masses']) / boltzmann
    else:
        weights = np.array(f['system/masses'])[select] / boltzmann

    if select is None:
        # just load the temperatures from the output file
        temps = f['trajectory/temp'][start:end:step]
    else:
        # compute the temperatures of the subsystem
        temps = []
        for i in range(start, end, step):
            temp = ((f['trajectory/vel'][i, select]**2).mean(axis=1) *
                    weights).mean()
            temps.append(temp)
        temps = np.array(temps)

    if temp is None:
        temp = temps.mean()

    presss = f['trajectory/press'][start:end:step]
    if press is None:
        press = presss.mean()

    # A) SYSTEM
    if select is None:
        natom = f['system/numbers'].shape[0]
    else:
        natom = 3 * len(select)
    if ndof is None:
        ndof = f['trajectory'].attrs.get('ndof')
    if ndof is None:
        ndof = 3 * natom
    #do_atom = ndof == 3*natom
    sigma = np.std(presss)
    press_step = sigma / 5

    # setup the pressure grid and make the histogram
    press_grid = np.arange(press - 5 * sigma, press + 5 * sigma, press_step)
    counts = np.histogram(presss.ravel(), bins=press_grid)[0]
    total = float(len(presss))

    # transform into empirical pdf and cdf
    emp_sys_pdf = counts / total
    emp_sys_cdf = counts.cumsum() / total

    # the analytical form
    rv = chi2(ndof, 0, boltzmann * temp)
    x_sys = press_grid[:-1]
    ana_sys_pdf = rv.cdf(press_grid[1:]) - rv.cdf(press_grid[:-1])
    ana_sys_cdf = rv.cdf(press_grid[1:])

    # C) Make the plots
    pt.clf()
    xconv = 1e6 * pascal

    pt.subplot(2, 1, 1)
    pt.title('System (ndof=%i)' % ndof)
    scale = 1 / emp_sys_pdf.max()
    pt.plot(x_sys / xconv,
            emp_sys_pdf * scale,
            'k-',
            drawstyle='steps-pre',
            label='Sim (%.3f MPa)' % (presss.mean() / (1e6 * pascal)))
    pt.plot(x_sys / xconv,
            ana_sys_pdf * scale,
            'r-',
            drawstyle='steps-pre',
            label='Exact (%.3f MPa)' % (press / (1e6 * pascal)))
    pt.axvline(press, color='k', ls='--')
    pt.ylim(ymin=0)
    pt.xlim(x_sys[0] / xconv, x_sys[-1] / xconv)
    pt.ylabel('Rescaled PDF')
    pt.legend(loc=0)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

    pt.subplot(2, 1, 2)
    pt.plot(x_sys / xconv, emp_sys_cdf, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys / xconv, ana_sys_cdf, 'r-', drawstyle='steps-pre')
    pt.axvline(press, color='k', ls='--')
    pt.xlim(x_sys[0] / xconv, x_sys[-1] / xconv)
    pt.ylim(0, 1)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.ylabel('CDF')
    pt.xlabel('Pressure [MPa]')

    pt.savefig(fn_png)
コード例 #20
0
def plot_temp_dist(f,
                   fn_png='temp_dist.png',
                   temp=None,
                   ndof=None,
                   select=None,
                   **kwargs):
    """Plots the distribution of the weighted atomic velocities

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       select
            A list of atom indexes that should be considered for the analysis.
            By default, information from all atoms is combined.

       temp
            The (expected) average temperature used to plot the theoretical
            distributions.

       ndof
            The number of degrees of freedom. If not specified, this is chosen
            to be 3*(number of atoms)

       start, end, step, max_sample
           The optional arguments of the ``get_slice`` function are also
           accepted in the form of keyword arguments.

       This type of plot is essential for checking the sanity of a simulation.
       The empirical cumulative distribution is plotted and overlayed with the
       analytical cumulative distribution one would expect if the data were
       taken from an NVT ensemble.

       This type of plot reveals issues with parts that are relatively cold or
       warm compared to the total average temperature. This helps to determine
       (the lack of) thermal equilibrium.
    """
    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    from scipy.stats import chi2
    start, end, step = get_slice(f, **kwargs)

    # Make an array with the weights used to compute the temperature
    if select is None:
        weights = np.array(f['system/masses']) / boltzmann
    else:
        weights = np.array(f['system/masses'])[select] / boltzmann

    if select is None:
        # just load the temperatures from the output file
        temps = f['trajectory/temp'][start:end:step]
    else:
        # compute the temperatures of the subsystem
        temps = []
        for i in range(start, end, step):
            temp = ((f['trajectory/vel'][i, select]**2).mean(axis=1) *
                    weights).mean()
            temps.append(temp)
        temps = np.array(temps)

    if temp is None:
        temp = temps.mean()

    # A) SYSTEM
    if select is None:
        natom = f['system/numbers'].shape[0]
    else:
        natom = 3 * len(select)
    if ndof is None:
        ndof = f['trajectory'].attrs.get('ndof')
    if ndof is None:
        ndof = 3 * natom
    do_atom = ndof == 3 * natom
    sigma = temp * np.sqrt(2.0 / ndof)
    temp_step = sigma / 5

    # setup the temperature grid and make the histogram
    temp_grid = np.arange(max(0, temp - 3 * sigma), temp + 5 * sigma,
                          temp_step)
    counts = np.histogram(temps.ravel(), bins=temp_grid)[0]
    total = float(len(temps))

    # transform into empirical pdf and cdf
    emp_sys_pdf = counts / total
    emp_sys_cdf = counts.cumsum() / total

    # the analytical form
    rv = chi2(ndof, 0, temp / ndof)
    x_sys = temp_grid[:-1]
    ana_sys_pdf = rv.cdf(temp_grid[1:]) - rv.cdf(temp_grid[:-1])
    ana_sys_cdf = rv.cdf(temp_grid[1:])

    if do_atom:
        # B) ATOMS
        temp_step = temp / 10

        # setup the temperature grid
        temp_grid = np.arange(0, temp * 5 + 0.5 * temp_step, temp_step)

        # build up the distribution for the atoms
        counts = np.zeros(len(temp_grid) - 1, int)
        total = 0.0
        for i in range(start, end, step):
            if select is None:
                atom_temps = (f['trajectory/vel'][i]**2).mean(axis=1) * weights
            else:
                atom_temps = (f['trajectory/vel'][i, select]**
                              2).mean(axis=1) * weights
            counts += np.histogram(atom_temps.ravel(), bins=temp_grid)[0]
            total += atom_temps.size

        # transform into empirical pdf and cdf
        emp_atom_pdf = counts / total
        emp_atom_cdf = counts.cumsum() / total

        # the analytical form
        rv = chi2(3, 0, temp / 3)
        x_atom = temp_grid[:-1]
        ana_atom_pdf = rv.cdf(temp_grid[1:]) - rv.cdf(temp_grid[:-1])
        ana_atom_cdf = rv.cdf(temp_grid[1:])

    # C) Make the plots
    pt.clf()
    xconv = log.temperature.conversion

    pt.subplot(2, 1 + do_atom, 1)
    pt.title('System (ndof=%i)' % ndof)
    scale = 1 / emp_sys_pdf.max()
    pt.plot(x_sys / xconv,
            emp_sys_pdf * scale,
            'k-',
            drawstyle='steps-pre',
            label='Sim (%.0f)' % (temps.mean()))
    pt.plot(x_sys / xconv,
            ana_sys_pdf * scale,
            'r-',
            drawstyle='steps-pre',
            label='Exact (%.0f)' % temp)
    pt.axvline(temp, color='k', ls='--')
    pt.ylim(ymin=0)
    pt.xlim(x_sys[0] / xconv, x_sys[-1] / xconv)
    pt.ylabel('Rescaled PDF')
    pt.legend(loc=0)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

    pt.subplot(2, 1 + do_atom, 2 + do_atom)
    pt.plot(x_sys / xconv, emp_sys_cdf, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys / xconv, ana_sys_cdf, 'r-', drawstyle='steps-pre')
    pt.axvline(temp, color='k', ls='--')
    pt.xlim(x_sys[0] / xconv, x_sys[-1] / xconv)
    pt.ylim(0, 1)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.ylabel('CDF')
    pt.xlabel('Temperature [%s]' % log.temperature.notation)

    if do_atom:
        pt.subplot(2, 2, 2)
        pt.title('Atom (ndof=3)')
        scale = 1 / emp_atom_pdf.max()
        pt.plot(x_atom / xconv,
                emp_atom_pdf * scale,
                'k-',
                drawstyle='steps-pre')
        pt.plot(x_atom / xconv,
                ana_atom_pdf * scale,
                'r-',
                drawstyle='steps-pre')
        pt.axvline(temp, color='k', ls='--')
        pt.xlim(x_atom[0] / xconv, x_atom[-1] / xconv)
        pt.ylim(ymin=0)
        pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

        pt.subplot(2, 2, 4)
        pt.plot(x_atom / xconv, emp_atom_cdf, 'k-', drawstyle='steps-pre')
        pt.plot(x_atom / xconv, ana_atom_cdf, 'r-', drawstyle='steps-pre')
        pt.axvline(temp, color='k', ls='--')
        pt.xlim(x_atom[0] / xconv, x_atom[-1] / xconv)
        pt.ylim(0, 1)
        pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
        pt.xlabel('Temperature [%s]' % log.temperature.notation)

    pt.savefig(fn_png)
コード例 #21
0
def plot_press_dist(f, temp, fn_png='press_dist.png', press=None, ndof=None, select=None, **kwargs):
    """Plots the distribution of the internal pressure

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       temp
            The (expected) average temperature used to plot the theoretical
            distributions.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       select
            A list of atom indexes that should be considered for the analysis.
            By default, information from all atoms is combined.

       press
            The (expected) average pressure used to plot the theoretical
            distributions.

       ndof
            The number of degrees of freedom. If not specified, this is chosen
            to be 3*(number of atoms)

       start, end, step, max_sample
           The optional arguments of the ``get_slice`` function are also
           accepted in the form of keyword arguments.

       This type of plot is essential for checking the sanity of a simulation.
       The empirical cumulative distribution is plotted and overlayed with the
       analytical cumulative distribution one would expect if the data were
       taken from an NPT ensemble.
    """
    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    from scipy.stats import chi2
    start, end, step = get_slice(f, **kwargs)

    # Make an array with the weights used to compute the temperature
    if select is None:
        weights = np.array(f['system/masses'])/boltzmann
    else:
        weights = np.array(f['system/masses'])[select]/boltzmann

    if select is None:
        # just load the temperatures from the output file
        temps = f['trajectory/temp'][start:end:step]
    else:
        # compute the temperatures of the subsystem
        temps = []
        for i in xrange(start, end, step):
             temp = ((f['trajectory/vel'][i,select]**2).mean(axis=1)*weights).mean()
             temps.append(temp)
        temps = np.array(temps)

    if temp is None:
        temp = temps.mean()

    presss = f['trajectory/press'][start:end:step]
    if press is None:
        press = presss.mean()

    # A) SYSTEM
    if select is None:
        natom = f['system/numbers'].shape[0]
    else:
        natom = 3*len(select)
    if ndof is None:
        ndof = f['trajectory'].attrs.get('ndof')
    if ndof is None:
        ndof = 3*natom
    #do_atom = ndof == 3*natom
    sigma = np.std(presss)
    press_step = sigma/5

    # setup the pressure grid and make the histogram
    press_grid = np.arange(press-5*sigma, press+5*sigma, press_step)
    counts = np.histogram(presss.ravel(), bins=press_grid)[0]
    total = float(len(presss))

    # transform into empirical pdf and cdf
    emp_sys_pdf = counts/total
    emp_sys_cdf = counts.cumsum()/total

    # the analytical form
    rv = chi2(ndof, 0, boltzmann*temp)
    x_sys = press_grid[:-1]
    ana_sys_pdf = rv.cdf(press_grid[1:]) - rv.cdf(press_grid[:-1])
    ana_sys_cdf = rv.cdf(press_grid[1:])

    # C) Make the plots
    pt.clf()
    xconv = 1e6*pascal

    pt.subplot(2, 1, 1)
    pt.title('System (ndof=%i)' % ndof)
    scale = 1/emp_sys_pdf.max()
    pt.plot(x_sys/xconv, emp_sys_pdf*scale, 'k-', drawstyle='steps-pre', label='Sim (%.3f MPa)' % (presss.mean()/(1e6*pascal)))
    pt.plot(x_sys/xconv, ana_sys_pdf*scale, 'r-', drawstyle='steps-pre', label='Exact (%.3f MPa)' % (press/(1e6*pascal)))
    pt.axvline(press, color='k', ls='--')
    pt.ylim(ymin=0)
    pt.xlim(x_sys[0]/xconv, x_sys[-1]/xconv)
    pt.ylabel('Rescaled PDF')
    pt.legend(loc=0)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

    pt.subplot(2, 1, 2)
    pt.plot(x_sys/xconv, emp_sys_cdf, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys/xconv, ana_sys_cdf, 'r-', drawstyle='steps-pre')
    pt.axvline(press, color='k', ls='--')
    pt.xlim(x_sys[0]/xconv, x_sys[-1]/xconv)
    pt.ylim(0, 1)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.ylabel('CDF')
    pt.xlabel('Pressure [MPa]')

    pt.savefig(fn_png)
コード例 #22
0
def plot_volume_dist(f, fn_png='volume_dist.png', temp=None, press=None, **kwargs):
    """Plots the distribution of the volume

        **Arguments:**

        f
            An h5.File instance containing the trajectory data.


        **Optional arguments:**

        fn_png
            The png file to write the figure to

        temp
            The (expected) average temperature used to plot the theoretical
            distributions.

        press
            The (expected) average pressure used to plot the theoretical
            distributions.

        start, end, step, max_sample
           The optional arguments of the ``get_slice`` function are also
           accepted in the form of keyword arguments.

       This type of plot is essential for checking the sanity of a simulation.
       The empirical cumulative distribution is plotted and overlayed with the
       analytical cumulative distribution one would expect if the data were
       taken from an NPT ensemble.
    """
    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    from scipy.stats import chi2
    start, end, step = get_slice(f, **kwargs)


    if temp is None:
        # Make an array of the temperature
        temps = f['trajectory/temp'][start:end:step]
        temp = temps.mean()

    if press is None:
        # Make an array of the pressure
        presss = f['trajectory/press'][start:end:step]
        press = presss.mean()

    # Make an array of the cell volume
    vols = f['trajectory/volume'][start:end:step]
    vol0 = vols.mean()

    sigma = np.std(vols)
    vol_step = sigma/5

    # setup the volume grid and make the histogram
    vol_grid = np.arange(vol0-3*sigma, vol0+3*sigma, vol_step)
    counts = np.histogram(vols.ravel(), bins=vol_grid)[0]
    total = float(len(vols))

    # transform into empirical pdf and cdf
    emp_sys_pdf = counts/total
    emp_sys_cdf = counts.cumsum()/total

    # the analytical form
    #rv = chi2(2, 0, vol0/2)
    rv = chi2(2, vol0-boltzmann*temp/press , boltzmann*temp/press/2)
    x_sys = vol_grid[:-1]
    ana_sys_pdf = rv.cdf(vol_grid[1:]) - rv.cdf(vol_grid[:-1])
    ana_sys_cdf = rv.cdf(vol_grid[1:])


    # C) Make the plots
    pt.clf()
    xconv = angstrom**3

    pt.subplot(2, 1, 1)
    pt.title('System')
    scale = 1/emp_sys_pdf.max()
    pt.plot(x_sys/xconv, emp_sys_pdf*scale, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys/xconv, ana_sys_pdf*scale, 'r-', drawstyle='steps-pre')
    pt.axvline(vol0/xconv, color='k', ls='--')
    pt.ylim(ymin=0)
    pt.xlim(x_sys[0]/xconv, x_sys[-1]/xconv)
    pt.ylabel('Rescaled PDF')
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))

    pt.subplot(2, 1, 2)
    pt.plot(x_sys/xconv, emp_sys_cdf, 'k-', drawstyle='steps-pre')
    pt.plot(x_sys/xconv, ana_sys_cdf, 'r-', drawstyle='steps-pre')
    pt.axvline(vol0/xconv, color='k', ls='--')
    pt.xlim(x_sys[0]/xconv, x_sys[-1]/xconv)
    pt.ylim(0, 1)
    pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.ylabel('CDF')
    pt.xlabel('Volume [A^3]')

    pt.savefig(fn_png)
コード例 #23
0
def plot_dihedral(f, index, fn_png='dihedral.png', n_int = 1, xlim = None, ymax = None, angle_lim = None, angle_shift = False, oriented = False, **kwargs):
    """Make a plot of the angle between the given atoms as f. of time

    **Arguments:**

     f
        An h5.File instance containing the trajectory data

     index
        A list containing the four indices of the atoms as in the h5 file

   **Optional arguments:**

   fn_png
        The png file to write the figure to

    n_int
        The number of equidistant intervals considered in the FFT and histogram

    xlim
        Frequency interval of interest

    ymax
        Maximal intensity of interest in the FFT

    angle_lim
        Angle interval of interest in the histogram

    angle_shift
        If True, all angles are shifted towards positive values

    oriented
        If True, a distinction is made between positive and negative angles
    """

    import matplotlib.pyplot as pt
    from matplotlib.ticker import MaxNLocator
    start, end, step = get_slice(f, **kwargs)

    n_angles = index.shape[0]
    n_atoms = index.shape[1]
    n_dim = 3
    if n_atoms != 4: raise AssertionError(n_atoms + ' atoms selected instead of 4')

    # construct the working arrays
    time = f['trajectory/time'][start:end:step]
    atom_vec = np.zeros((len(time), n_angles, n_dim, 3))
    plane_vec = np.zeros((len(time), n_angles, n_dim, 2))
    angle = np.zeros((len(time), n_angles))

    pt.clf()
    comap = pt.cm.get_cmap(name='hsv')
    # calculate the relative positions
    for i in xrange(n_angles):
        for j in xrange(3):
            atom_vec[:,i,:,j] = f['trajectory/pos'][start:end:step, index[i,j+1], :]-f['trajectory/pos'][start:end:step, index[i,j], :]
        # calculate the plane normals
        for j in xrange(2):
            plane_vec[:,i,:,j] = np.cross(atom_vec[:,i,:,j], atom_vec[:,i,:,j+1])
        angle[:,i] = np.arccos((plane_vec[:,i,:,0]*plane_vec[:,i,:,1]).sum(axis=1)/np.sqrt((plane_vec[:,i,:,0]**2).sum(axis=1)*(plane_vec[:,i,:,1]**2).sum(axis=1)))/log.angle.conversion
        if oriented:
            # determine the orientation of the cross product of both planes wrt the mutual axis
            sign = np.sign((np.cross(plane_vec[:,i,:,0], plane_vec[:,i,:,1])*atom_vec[:,i,:,1]).sum(axis=1))
            angle[:,i] *= sign
            for j in xrange(len(time)):
                if angle_shift and angle[j,i] < 0: angle[j,i] += 360

        # plot the raw time signal
        pt.plot(time/(1e-12*second), angle[:,i], color = comap(1.0*i/n_angles))
    pt.xlim([time[0]/(1e-12*second), time[-1]/(1e-12*second)])
    pt.xlabel('Time [ps]')
    pt.ylabel('Dihedral angle [%s]' % log.angle.notation)
    pt.savefig('time_' + str(fn_png))

    # calculate the fourier transform
    loss = len(time) % n_int
    time_int = time[0:len(time)-loss].reshape(n_int,-1)
    angle_int = angle.reshape(n_int, -1, n_angles)
    timestep = time[1]-time[0]
    bsize = len(time)/n_int
    ssize = bsize/2+1
    freq_fft = np.arange(ssize)/(timestep*bsize)
    angle_int_fft = np.zeros((n_int, len(freq_fft)))

    for i in xrange(n_int):
        av = angle_int[i,:,:].mean()
        for j in xrange(n_angles):
            angle_int_fft[i,:] += abs(np.fft.rfft(angle_int[i,:,j]-av))**2

    # plot the fourier transform
    pt.clf()
    if n_int == 1:
        pt.plot(freq_fft/lightspeed*centimeter, angle_int_fft[0,:], 'k-')
    else:
        for i in xrange(n_int):
            pt.plot(freq_fft/lightspeed*centimeter, angle_int_fft[i,:], color = comap(1.0*i/n_int), label = r'[%0.f ps, %0.f ps]' % (time_int[i,0]/(1e-12*second), time_int[i,-1]/(1e-12*second)))
        pt.legend(loc=0)
    pt.xlabel('Frequency [cm^-1]')
    pt.ylabel('Intensity [au]')
    if xlim is not None:
            pt.xlim(xlim[0], xlim[1])
    if ymax is not None:
            pt.ylim(ymax=ymax)
    pt.savefig('fft_' + str(fn_png))

    # setup the angle grid and make the histogram
    angle_min = 0
    angle_max = 180
    if oriented: angle_min = -180
    if angle_shift:
        angle_min = 0
        angle_max = 360
    angle0 = angle.mean()
    sigma = np.std(angle)
    angle_step = sigma/25.0
    angle_grid = np.arange(angle_min, angle_max, angle_step)
    # plot the different probability distributions
    pt.clf()
    for i in xrange(n_int):
        # make the histogram
        counts = 0
        for j in xrange(n_angles):
            counts += np.histogram(angle_int[i,:,j].ravel(), bins=angle_grid)[0]
        total = float(time_int.shape[1]*n_angles)
        emp_sys_pdf = counts/total
        x_sys = angle_grid[:-1]

        # plot the histogram
        if n_int == 1:
            pt.plot(x_sys, emp_sys_pdf, color = 'k')
        else:
            pt.plot(x_sys, emp_sys_pdf, color = comap(1.0*i/n_int), label = r'[%0.f ps, %0.f ps]' % (time_int[i,0]/(1e-12*second), time_int[i,-1]/(1e-12*second)))
        pt.ylim(ymin=0)
        pt.xlim(x_sys[0], x_sys[-1])
        pt.ylabel('PDF')
        pt.xlabel('Dihedral angle [%s]' % log.angle.notation)
        pt.gca().get_xaxis().set_major_locator(MaxNLocator(nbins=5))
    pt.legend(loc=0)
    if angle_lim is not None:
        pt.xlim(angle_lim[0], angle_lim[1])
    pt.savefig('dist_' + str(fn_png))
コード例 #24
0
def plot_cell_pars(f, fn_png='cell_pars.png', **kwargs):
    """Make a plot of the cell parameters as function of time

       **Arguments:**

       f
            An h5.File instance containing the trajectory data.

       **Optional arguments:**

       fn_png
            The png file to write the figure to

       The optional arguments of the ``get_slice`` function are also accepted in
       the form of keyword arguments.

       The units for making the plot are taken from the yaff screen logger.
    """
    import matplotlib.pyplot as pt
    start, end, step = get_slice(f, **kwargs)

    cell = f['trajectory/cell'][start:end:step]/log.length.conversion
    lengths = np.sqrt((cell**2).sum(axis=2))
    time, tlabel = get_time(f, start, end, step)
    nvec = lengths.shape[1]

    def get_angle(i0, i1):
        return np.arccos(np.clip((cell[:,i0]*cell[:,i1]).sum(axis=1)/lengths[:,i0]/lengths[:,i1], -1,1))/log.angle.conversion

    pt.clf()

    if nvec == 3:
        pt.subplot(2,1,1)
        pt.plot(time, lengths[:,0], 'r-', label='a')
        pt.plot(time, lengths[:,1], 'g-', label='b')
        pt.plot(time, lengths[:,2], 'b-', label='c')
        pt.xlim(time[0], time[-1])
        pt.ylabel('Lengths [%s]' % log.length.notation)
        pt.legend(loc=0)

        alpha = get_angle(1, 2)
        beta = get_angle(2, 0)
        gamma = get_angle(0, 1)
        pt.subplot(2, 1, 2)
        pt.plot(time, alpha, 'r-', label='alpha')
        pt.plot(time, beta, 'g-', label='beta')
        pt.plot(time, gamma, 'b-', label='gamma')
        pt.xlim(time[0], time[-1])
        pt.xlabel(tlabel)
        pt.ylabel('Angles [%s]' % log.angle.notation)
        pt.legend(loc=0)
    elif nvec == 2:
        pt.subplot(2,1,1)
        pt.plot(time, lengths[:,0], 'r-', label='a')
        pt.plot(time, lengths[:,1], 'g-', label='b')
        pt.xlim(time[0], time[-1])
        pt.ylabel('Lengths [%s]' % log.length.notation)
        pt.legend(loc=0)

        gamma = get_angle(0, 1)
        pt.subplot(2, 1, 2)
        pt.plot(time, gamma, 'b-', label='gamma')
        pt.xlim(time[0], time[-1])
        pt.xlabel(tlabel)
        pt.ylabel('Angle [%s]' % log.angle.notation)
        pt.legend(loc=0)
    elif nvec == 1:
        pt.plot(time, lengths[:,0], 'k-')
        pt.xlim(time[0], time[-1])
        pt.xlabel(tlabel)
        pt.ylabel('Lengths [%s]' % log.length.notation)
    else:
        raise ValueError('Can not plot cell parameters if the system is not periodic.')

    pt.savefig(fn_png)