コード例 #1
0
    def cut_resolution(self, cycle_number):
        def est_resol(xscale_hkl, res_params, plt_out):
            iobs = XDS_ASCII(xscale_hkl, i_only=True).i_obs()
            est = estimate_resolution_based_on_cc_half(iobs, res_params.cc_one_half_min,
                                                       res_params.cc_half_tol,
                                                       res_params.n_bins, log_out=self.out)
            est.show_plot(False, plt_out)
            if None not in (est.d_min, est.cc_at_d_min):
                self.out.write("Best resolution cutoff= %.2f A @CC1/2= %.4f\n" % (est.d_min, est.cc_at_d_min))
            else:
                self.out.write("Can't decide resolution cutoff. No reflections??\n")
            return est.d_min
        # est_resol()

        print >>self.out, "**** Determining resolution cutoff in run_%.2d ****" % cycle_number
        last_wd = os.path.join(self.workdir_org, "run_%.2d"%cycle_number)
        xscale_hkl = os.path.abspath(os.path.join(last_wd, "xscale.hkl"))

        tmpwd = os.path.join(self.workdir_org, "run_%.2d_tmp"%cycle_number)
        os.mkdir(tmpwd)

        for i, cc_cut in enumerate((self.res_params.cc_one_half_min*.7, self.res_params.cc_one_half_min)):
            self.res_params.cc_one_half_min = cc_cut
            d_min = est_resol(xscale_hkl, self.res_params,
                              os.path.join(tmpwd, "ccfit_%d.pdf"%(i+1)))
            if d_min is not None and d_min > self.d_min + 0.001:
                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(tmpwd, f))
                inp_new = os.path.join(tmpwd, "XSCALE.INP")
                shutil.copyfile(os.path.join(last_wd, "XSCALE.INP"), inp_new)
                modify_xdsinp(inp_new, [make_bin_str(d_min, self.d_max).split("= ")])

                try:
                    xscale.run_xscale(inp_new, cbf_to_dat=True, aniso_analysis=True,
                                      use_tmpdir_if_available=self.xscale_params.use_tmpdir_if_available)
                except:
                    print >>self.out, traceback.format_exc()

                xscale_hkl = os.path.abspath(os.path.join(tmpwd, "xscale.hkl"))

        if not os.path.isfile(os.path.join(tmpwd, "XSCALE.INP")):
            for f in "XSCALE.INP", "XSCALE.LP", "xscale.hkl", "pointless.log", "ccp4":
                os.symlink(os.path.relpath(os.path.join(last_wd, f), tmpwd),
                           os.path.join(tmpwd, f))

        if d_min is not None:
            self.dmin_est_at_cycles[cycle_number] = d_min
            os.rename(tmpwd, os.path.join(self.workdir_org, "run_%.2d_%.2fA"%(cycle_number, d_min)))
コード例 #2
0
def run_dials_sequence(filename_template, prefix, nr_range, wdir, known_xs,
                       overrides, scan_varying, nproc):
    log_out = open(os.path.join(wdir, "dials_sequence.log"), "w")
    pointless_log = os.path.join(wdir, "pointless.log")

    # Prepare
    img_files = find_existing_files_in_template(
        filename_template,
        nr_range[0],
        nr_range[1],
        datadir=os.path.dirname(prefix),
        check_compressed=True)
    if len(img_files) == 0:
        mylog.error("No files found for %s %s" % (filename_template, nr_range))
        return

    nproc_str = "nproc=%d" % nproc

    log_out.write("Importing %s range=%s\n" % (img_files, nr_range))
    log_out.write(" Overrides: %s\n" % overrides)
    log_out.flush()

    override_str = ""  # TODO support other stuff.. (wavelength, distance, osc_range, rotation_axis,..)
    if "orgx" in overrides and "orgy" in overrides:
        override_str += "slow_fast_beam_centre=%.2f,%.2f " % (
            overrides["orgy"], overrides["orgx"])

    if len(img_files) == 1 and img_files[0].endswith(".h5"):
        util.call('dials.import "%s" %s image_range=%d,%d' %
                  (img_files[0], override_str, nr_range[0], nr_range[1]),
                  wdir=wdir,
                  stdout=log_out,
                  expects_out=[os.path.join(wdir, "datablock.json")])
    else:
        util.call('dials.import %s template="%s" image_range=%d,%d' %
                  (override_str, filename_template.replace(
                      "?", "#"), nr_range[0], nr_range[1]),
                  wdir=wdir,
                  stdout=log_out,
                  expects_out=[os.path.join(wdir, "datablock.json")])

    util.call(
        "dials.find_spots datablock.json filter.d_max=30 %s" %
        nproc_str,  # global_threshold=200
        wdir=wdir,
        stdout=log_out,
        expects_out=[os.path.join(wdir, "strong.pickle")])

    util.call("dials.export strong.pickle format=xds xds.directory=.",
              wdir=wdir,
              stdout=log_out)

    index_ok = False
    for index_meth in ("fft3d", "fft1d", "real_space_grid_search"):
        for index_assi in ("local", "simple"):
            if index_ok: break
            cmd = "dials.index datablock.json strong.pickle verbosity=3 "
            cmd += "indexing.method=%s index_assignment.method=%s " % (
                index_meth, index_assi)
            if known_xs is not None:  # not in (known.space_group, known.unit_cell):
                cmd += "unit_cell=%s space_group=%d " % (
                    ",".join(
                        map(lambda x: "%.3f" % x,
                            known_xs.unit_cell().parameters())),
                    known_xs.space_group().type().number())
            elif index_meth == "real_space_grid_search":
                continue

            log_out.write(
                "Trying indexing.method=%s index_assignment.method=%s\n" %
                (index_meth, index_assi))
            log_out.flush()
            util.call(cmd, wdir=wdir, stdout=log_out)
            if os.path.isfile(os.path.join(wdir, "experiments.json")):
                index_ok = True
            else:
                for f in ("dials.index.log", "dials.index.debug.log"):
                    util.rotate_file(os.path.join(wdir, f))

    if not index_ok:
        return

    files_for_integration = "experiments.json indexed.pickle"

    if scan_varying:
        util.call(
            "dials.refine experiments.json indexed.pickle scan_varying=true",
            wdir=wdir,
            stdout=log_out)
        if os.path.isfile(os.path.join(wdir, "refined.pickle")):
            files_for_integration = "refined_experiments.json refined.pickle"
        else:
            log_out.write("dials.refine failed. using intedexed results.\n")

    util.call("dials.integrate %s min_spots.per_degree=10 %s" %
              (files_for_integration, nproc_str),
              wdir=wdir,
              stdout=log_out)
    util.call(
        "dials.export integrated.pickle integrated_experiments.json mtz.hklout=integrated.mtz",
        wdir=wdir,
        stdout=log_out)
    util.call("pointless integrated.mtz hklout pointless.mtz",
              wdir=wdir,
              stdin="SETTING SYMMETRY-BASED\ntolerance 10\n",
              stdout=open(pointless_log, "w"))
    util.call(
        "dials.export integrated_experiments.json integrated.pickle format=xds_ascii xds_ascii.hklout=DIALS.HKL",
        wdir=wdir,
        stdout=log_out)
    util.call("aimless hklin pointless.mtz hklout aimless.mtz",
              wdir=wdir,
              stdin="output UNMERGED\n",
              stdout=open(os.path.join(wdir, "aimless.log"), "w"))

    #job_str += "touch dials_job_finished\n"

    ret = calc_merging_stats(os.path.join(wdir, "aimless_unmerged.mtz"))
    ret["symm"] = get_most_possible_symmetry(wdir)

    pickle.dump(ret, open(os.path.join(wdir, "kamo_dials.pkl"), "w"), -1)
コード例 #3
0
def xds_sequence(root, params):
    print
    print os.path.relpath(root, params.topdir)

    xparm = os.path.join(root, "XPARM.XDS")
    gxparm = os.path.join(root, "GXPARM.XDS")
    defpix_lp = os.path.join(root, "DEFPIX.LP")
    correct_lp = os.path.join(root, "CORRECT.LP")
    integrate_hkl = os.path.join(root, "INTEGRATE.HKL")
    xac_hkl = os.path.join(root, "XDS_ASCII.HKL")
    integrate_lp = os.path.join(root, "INTEGRATE.LP")
    spot_xds = os.path.join(root, "SPOT.XDS")
    xdsinp = os.path.join(root, "XDS.INP")

    assert os.path.isfile(xdsinp)

    xdsinp_dict = dict(get_xdsinp_keyword(xdsinp))

    decilog = multi_out()
    decilog.register("log",
                     open(os.path.join(root, "decision.log"), "a"),
                     atexit_send_to=None)

    print >> decilog, "xds_sequence started at %s in %s\n" % (
        time.strftime("%Y-%m-%d %H:%M:%S"), root)

    if params.show_progress:
        decilog.register("stdout", sys.stdout)

    if params.mode == "initial" and params.resume and os.path.isfile(
            correct_lp):
        print " Already processed."
        return

    if params.mode == "recycle" and not os.path.isfile(gxparm):
        print "GXPARM.XDS not found. Cannot do recycle."
        return

    if params.fast_delphi and (params.nproc is None or params.nproc > 1):
        delphi = optimal_delphi_by_nproc(xdsinp=xdsinp, nproc=params.nproc)
        print " Setting delphi to ", delphi
        modify_xdsinp(xdsinp, inp_params=[
            ("DELPHI", str(delphi)),
        ])

    if params.nproc is not None and params.nproc > 1:
        modify_xdsinp(xdsinp,
                      inp_params=[
                          ("MAXIMUM_NUMBER_OF_PROCESSORS", str(params.nproc)),
                      ])

    if params.mode == "initial":
        # Peak search
        modify_xdsinp(xdsinp, inp_params=[("JOB", "XYCORR INIT COLSPOT")])
        run_xds(wdir=root, show_progress=params.show_progress)
        if params.auto_frame_exclude_spot_based:
            sx = idxreflp.SpotXds(spot_xds)
            sx.set_xdsinp(xdsinp)
            spots = filter(lambda x: 5 < x[-1] < 30,
                           sx.collected_spots())  # low-res (5 A)
            frame_numbers = numpy.array(map(lambda x: int(x[2]) + 1, spots))
            data_range = map(int, xdsinp_dict["DATA_RANGE"].split())
            # XXX this assumes SPOT_RANGE equals to DATA_RANGE. Is this guaranteed?
            h = numpy.histogram(frame_numbers,
                                bins=numpy.arange(data_range[0],
                                                  data_range[1] + 2,
                                                  step=1))
            q14 = numpy.percentile(h[0], [25, 75])
            iqr = q14[1] - q14[0]
            cutoff = max(h[0][h[0] <= iqr * 1.5 + q14[1]]) / 5  # magic number
            print "DEBUG:: IQR= %.2f, Q1/4= %s, cutoff= %.2f" % (iqr, q14,
                                                                 cutoff)
            cut_frames = h[1][h[0] < cutoff]
            keep_frames = h[1][h[0] >= cutoff]
            print "DEBUG:: keep_frames=", keep_frames
            print "DEBUG::  cut_frames=", cut_frames

            if len(cut_frames) > 0:
                cut_ranges = [
                    [cut_frames[0], cut_frames[0]],
                ]
                for fn in cut_frames:
                    if fn - cut_ranges[-1][1] <= 1: cut_ranges[-1][1] = fn
                    else: cut_ranges.append([fn, fn])

                # Edit XDS.INP
                cut_inp_str = "".join(
                    map(lambda x: "EXCLUDE_DATA_RANGE= %6d %6d\n" % tuple(x),
                        cut_ranges))
                open(xdsinp, "a").write("\n" + cut_inp_str)

                # Edit SPOT.XDS
                shutil.copyfile(spot_xds, spot_xds + ".org")
                sx.write(open(spot_xds, "w"), frame_selection=set(keep_frames))

        # Indexing
        modify_xdsinp(xdsinp, inp_params=[("JOB", "IDXREF")])
        run_xds(wdir=root, show_progress=params.show_progress)
        print  # indexing stats like indexed percentage here.

        if params.tryhard:
            try_indexing_hard(root,
                              params.show_progress,
                              decilog,
                              known_sgnum=params.cell_prior.sgnum,
                              known_cell=params.cell_prior.cell,
                              tol_length=params.cell_prior.tol_length,
                              tol_angle=params.cell_prior.tol_angle)

        if not os.path.isfile(xparm):
            print >> decilog, " Indexing failed."
            return

        if params.cell_prior.check and params.cell_prior.sgnum > 0:
            xsxds = XPARM(xparm).crystal_symmetry()
            xsref = crystal.symmetry(params.cell_prior.cell,
                                     params.cell_prior.sgnum)
            cosets = reindex.reindexing_operators(xsref, xsxds,
                                                  params.cell_prior.tol_length,
                                                  params.cell_prior.tol_angle)
            if cosets.double_cosets is None:
                print >> decilog, " Incompatible cell. Indexing failed."
                return

    elif params.mode == "recycle":
        print " Start recycle. original ISa= %.2f" % correctlp.get_ISa(
            correct_lp, check_valid=True)
        for f in xds_files.generated_after_DEFPIX + ("XPARM.XDS",
                                                     "plot_integrate.log"):
            util.rotate_file(os.path.join(root, f), copy=True)
        shutil.copyfile(gxparm + ".1", xparm)
    else:
        raise "Unknown mode (%s)" % params.mode

    # To Integration
    modify_xdsinp(xdsinp,
                  inp_params=[("JOB", "DEFPIX INTEGRATE"),
                              ("INCLUDE_RESOLUTION_RANGE", "50 0")])
    run_xds(wdir=root, show_progress=params.show_progress)
    if os.path.isfile(integrate_lp):
        xds_plot_integrate.run(integrate_lp,
                               os.path.join(root, "plot_integrate.log"))
    if not os.path.isfile(integrate_hkl):
        print >> decilog, " Integration failed."
        return

    # Make _noscale.HKL if needed
    if params.no_scaling:
        bk_prefix = make_backup(("XDS.INP", ), wdir=root, quiet=True)
        xparm_obj = XPARM(xparm)
        modify_xdsinp(xdsinp,
                      inp_params=[
                          ("JOB", "CORRECT"),
                          ("CORRECTIONS", ""),
                          ("NBATCH", "1"),
                          ("MINIMUM_I/SIGMA", "50"),
                          ("REFINE(CORRECT)", ""),
                          ("UNIT_CELL_CONSTANTS", " ".join(
                              map(lambda x: "%.3f" % x, xparm_obj.unit_cell))),
                          ("SPACE_GROUP_NUMBER", "%d" % xparm_obj.spacegroup),
                      ])
        print >> decilog, " running CORRECT without empirical scaling"
        run_xds(wdir=root, show_progress=params.show_progress)
        for f in xds_files.generated_by_CORRECT + ("XDS.INP", ):
            ff = os.path.join(root, f)
            if not os.path.isfile(ff): continue
            if ff.endswith(".cbf"):
                os.remove(ff)
            else:
                os.rename(ff, ff + "_noscale")

        revert_files(("XDS.INP", ), bk_prefix, wdir=root, quiet=True)

    # Run pointless
    symm_by_integrate = None
    if params.use_pointless:
        worker = Pointless()
        result = worker.run_for_symm(xdsin=integrate_hkl,
                                     logout=os.path.join(
                                         root, "pointless_integrate.log"))
        if "symm" in result:
            symm = result["symm"]
            print >> decilog, " pointless using INTEGRATE.HKL suggested", symm.space_group_info(
            )
            sgnum = symm.space_group_info().type().number()
            cell = " ".join(
                map(lambda x: "%.2f" % x,
                    symm.unit_cell().parameters()))
            modify_xdsinp(xdsinp,
                          inp_params=[("SPACE_GROUP_NUMBER", "%d" % sgnum),
                                      ("UNIT_CELL_CONSTANTS", cell)])
            symm_by_integrate = symm
        else:
            print >> decilog, " pointless failed."

    # Do Scaling
    modify_xdsinp(xdsinp, inp_params=[
        ("JOB", "CORRECT"),
    ])

    run_xds(wdir=root, show_progress=params.show_progress)

    if not os.path.isfile(gxparm):
        print >> decilog, " Scaling failed."
        return

    print >> decilog, " OK. ISa= %.2f" % correctlp.get_ISa(correct_lp,
                                                           check_valid=True)

    ret = calc_merging_stats(os.path.join(root, "XDS_ASCII.HKL"))
    if params.cut_resolution:
        if ret is not None and ret[0] is not None:
            d_min = ret[0]
            modify_xdsinp(xdsinp,
                          inp_params=[("JOB", "CORRECT"),
                                      ("INCLUDE_RESOLUTION_RANGE",
                                       "50 %.2f" % d_min)])
            print >> decilog, " Re-scale at %.2f A" % d_min
            os.rename(os.path.join(root, "CORRECT.LP"),
                      os.path.join(root, "CORRECT_fullres.LP"))
            os.rename(os.path.join(root, "XDS_ASCII.HKL"),
                      os.path.join(root, "XDS_ASCII_fullres.HKL"))
            run_xds(wdir=root, show_progress=params.show_progress)
            print >> decilog, " OK. ISa= %.2f" % correctlp.get_ISa(
                correct_lp, check_valid=True)
            print >> decilog, " (Original files are saved as *_fullres.*)"
        else:
            print >> decilog, "error: Can't decide resolution."

    last_ISa = correctlp.get_ISa(correct_lp, check_valid=True)

    # Run pointless and (if result is different from INTEGRATE) re-scale.
    if params.use_pointless:
        worker = Pointless()
        result = worker.run_for_symm(xdsin=xac_hkl,
                                     logout=os.path.join(
                                         root, "pointless_correct.log"))
        if "symm" in result:
            symm = result["symm"]
            need_rescale = False

            if symm_by_integrate is not None:
                if not xtal.is_same_laue_symmetry(
                        symm_by_integrate.space_group(), symm.space_group()):
                    print >> decilog, "pointless suggested %s, which is different Laue symmetry from INTEGRATE.HKL (%s)" % (
                        symm.space_group_info(),
                        symm_by_integrate.space_group_info())
                    need_rescale = True
            else:
                print >> decilog, "pointless using XDS_ASCII.HKL suggested %s" % symm.space_group_info(
                )
                need_rescale = True

            if need_rescale:
                # make backup, and do correct and compare ISa
                # if ISa got worse, revert the result.
                backup_needed = ("XDS.INP", "XDS_ASCII_fullres.HKL",
                                 "CORRECT_fullres.LP", "merging_stats.pkl",
                                 "merging_stats.log")
                backup_needed += xds_files.generated_by_CORRECT
                bk_prefix = make_backup(backup_needed, wdir=root, quiet=True)

                sgnum = symm.space_group_info().type().number()
                cell = " ".join(
                    map(lambda x: "%.2f" % x,
                        symm.unit_cell().parameters()))
                modify_xdsinp(xdsinp,
                              inp_params=[("JOB", "CORRECT"),
                                          ("SPACE_GROUP_NUMBER", "%d" % sgnum),
                                          ("UNIT_CELL_CONSTANTS", cell),
                                          ("INCLUDE_RESOLUTION_RANGE", "50 0")
                                          ])

                run_xds(wdir=root, show_progress=params.show_progress)

                ret = calc_merging_stats(os.path.join(root, "XDS_ASCII.HKL"))

                if params.cut_resolution:
                    if ret is not None and ret[0] is not None:
                        d_min = ret[0]
                        modify_xdsinp(xdsinp,
                                      inp_params=[("JOB", "CORRECT"),
                                                  ("INCLUDE_RESOLUTION_RANGE",
                                                   "50 %.2f" % d_min)])
                        print >> decilog, " Re-scale at %.2f A" % d_min
                        os.rename(os.path.join(root, "CORRECT.LP"),
                                  os.path.join(root, "CORRECT_fullres.LP"))
                        os.rename(os.path.join(root, "XDS_ASCII.HKL"),
                                  os.path.join(root, "XDS_ASCII_fullres.HKL"))
                        run_xds(wdir=root, show_progress=params.show_progress)
                        print >> decilog, " OK. ISa= %.2f" % correctlp.get_ISa(
                            correct_lp, check_valid=True)
                        print >> decilog, " (Original files are saved as *_fullres.*)"
                    else:
                        print >> decilog, "error: Can't decide resolution."
                        for f in ("CORRECT_fullres.LP",
                                  "XDS_ASCII_fullres.HKL"):
                            if os.path.isfile(os.path.join(root, f)):
                                print >> decilog, "removing", f
                                os.remove(os.path.join(root, f))

                ISa = correctlp.get_ISa(correct_lp, check_valid=True)

                if ISa >= last_ISa or last_ISa != last_ISa:  # if improved or last_ISa is nan
                    print >> decilog, "ISa improved= %.2f" % ISa
                    remove_backups(backup_needed, bk_prefix, wdir=root)
                else:
                    print >> decilog, "ISa got worse= %.2f" % ISa
                    for f in backup_needed:
                        if os.path.isfile(os.path.join(root, f)):
                            os.remove(os.path.join(root, f))

                    revert_files(backup_needed,
                                 bk_prefix,
                                 wdir=root,
                                 quiet=True)

    run_xdsstat(wdir=root)
    print
    if params.make_report: html_report.make_individual_report(root, root)
    print >> decilog, "xds_sequence finished at %s\n" % time.strftime(
        "%Y-%m-%d %H:%M:%S")
    decilog.close()
コード例 #4
0
    def run_cycle(self, xds_ascii_files, reference_idx=None):
        if len(xds_ascii_files) == 0:
            print >>self.out, "Error: no files given."
            return

        xscale_inp = os.path.join(self.workdir, "XSCALE.INP")
        xscale_lp = os.path.join(self.workdir, "XSCALE.LP")

        # Get averaged cell for scaling
        sg, cell, lcv, alcv = self.average_cells(xds_ascii_files)
        self.cell_info_at_cycles[self.get_last_cycle_number()] = (cell, lcv, alcv)
        
        # Choose directory containing XDS_ASCII.HKL and set space group (but how??)
        inp_out = open(xscale_inp, "w")
        inp_out.write("MAXIMUM_NUMBER_OF_PROCESSORS= %d\n" % self.nproc)
        inp_out.write("SPACE_GROUP_NUMBER= %s\nUNIT_CELL_CONSTANTS= %s\n\n" % (sg, cell))
        inp_out.write(self.xscale_inp_head)

        for i, xds_ascii in enumerate(xds_ascii_files):
            f = self.altfile.get(xds_ascii, xds_ascii)
            tmp = min(os.path.relpath(f, self.workdir), f, key=lambda x:len(x))
            refstr = "*" if i==reference_idx else " "
            inp_out.write(" INPUT_FILE=%s%s\n" % (refstr,tmp))
            if len(self.xscale_params.corrections) != 3:
                inp_out.write("  CORRECTIONS= %s\n" % " ".join(self.xscale_params.corrections))
            if self.xscale_params.frames_per_batch is not None:
                frame_range = XDS_ASCII(f, read_data=False).get_frame_range()
                nframes = frame_range[1] - frame_range[0]
                nbatch = int(numpy.ceil(nframes / self.xscale_params.frames_per_batch))
                print >>self.out, "frame range of %s is %d,%d setting NBATCH= %d" % (f, frame_range[0], frame_range[1], nbatch)
                inp_out.write("  NBATCH= %d\n" % nbatch)

        inp_out.close()

        print >>self.out, "DEBUG:: running xscale with %3d files.." % len(xds_ascii_files)
        try:
            xscale.run_xscale(xscale_inp, cbf_to_dat=True,
                              use_tmpdir_if_available=self.xscale_params.use_tmpdir_if_available)
        except:
            print >>self.out, traceback.format_exc()

        xscale_log = open(xscale_lp).read()
        if "!!! ERROR !!! INSUFFICIENT NUMBER OF COMMON STRONG REFLECTIONS." in xscale_log:
            print >>self.out, "DEBUG:: Need to choose files."

            # From XDS ver. March 1, 2015, it kindly informs which dataset has no common reflections.
            # ..but does not print the table. Sometimes only one dataset is left. Should we make table by ourselves?
            # Older versions just print correlation table and stop.
            if "CORRELATIONS BETWEEN INPUT DATA SETS AFTER CORRECTIONS" in xscale_log:
                G = xscalelp.construct_data_graph(xscale_lp, min_common_refs=10)
                #nx.write_dot(G, os.path.join(self.workdir, "common_set_graph.dot"))
                cliques = [c for c in nx.find_cliques(G)]
                cliques.sort(key=lambda x:len(x))
                if self._counter == 1:
                    max_clique = cliques[-1]
                else:
                    idx_prevfile = 1 if self.reference_file else 0
                    max_clique = filter(lambda x: idx_prevfile in x, cliques)[-1] # xscale.hkl must be included!

                if self.reference_file:
                    max_clique = [0,] + filter(lambda x: x!=0, max_clique)

                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))

                try_later = map(lambda i: xds_ascii_files[i], filter(lambda x: x not in max_clique, G.nodes()))

                print >>self.out, "DEBUG:: %d files can be merged. %d files will be merged later." % (len(max_clique),
                                                                                                      len(try_later))
                print >>self.out, "DEBUG:: %d files are of no use." % (len(xds_ascii_files)-len(G.nodes()))
                for i in filter(lambda j: j not in G.nodes(), xrange(len(xds_ascii_files))):
                    self.removed_files.append(xds_ascii_files[i])
                    self.removed_reason[xds_ascii_files[i]] = "no_common_refls"

                self.run_cycle(map(lambda i: xds_ascii_files[i], max_clique))

                assert len(try_later) <= 0 # Never be the case with newer xscale!! (if the case, check_remove_list() should be modified to skip_num+=1
                if len(try_later) > 0:
                    print >>self.out, "Trying to merge %d remaining files.." % len(try_later)
                    next_files = [os.path.join(self.workdir, "xscale.hkl")] + try_later
                    if self.reference_file: next_files = [self.reference_file,] + next_files
                    self.workdir = self.request_next_workdir()
                    self.run_cycle(next_files)
                    return
            else:
                bad_idxes = xscalelp.read_no_common_ref_datasets(xscale_lp)
                print >>self.out, "DEBUG:: %d files are of no use." % (len(bad_idxes))

                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))

                # XXX Actually, not all datasets need to be thrown.. some of them are useful..
                for i in bad_idxes:
                    self.removed_files.append(xds_ascii_files[i])
                    self.removed_reason[xds_ascii_files[i]] = "no_common_refls"

                self.run_cycle(map(lambda i: xds_ascii_files[i], 
                                   filter(lambda j: j not in bad_idxes, xrange(len(xds_ascii_files)))))

            return
        elif "!!! ERROR !!! USELESS DATA ON INPUT REFLECTION FILE" in xscale_log:
            print >>self.out, "DEBUG:: Need to discard useless data."
            unuseful_data = [xscalelp.get_read_data(xscale_lp)[-1]] #filter(lambda x: x[2]==0, xscalelp.get_read_data(xscale_lp))
            if len(unuseful_data) == 0:
                print >>self.out, "I don't know how to fix it.."
                return
            remove_idxes = map(lambda x: x[0]-1, unuseful_data)
            remove_idxes = self.check_remove_list(remove_idxes)
            keep_idxes = filter(lambda x: x not in remove_idxes, xrange(len(xds_ascii_files)))
            for i in remove_idxes:
                self.removed_files.append(xds_ascii_files[i])
                self.removed_reason[xds_ascii_files[i]] = "useless"

            for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))
            self.run_cycle(map(lambda i: xds_ascii_files[i], keep_idxes))
            return
        elif "INACCURATE SCALING FACTORS." in xscale_log:
            # Actually I don't know how to fix this.. (bug?) but worth proceeding (discarding bad data may solve problem).
            print >>self.out, "'INACCURATE SCALING FACTORS' happened.. but ignored."
        elif "!!! ERROR !!!" in xscale_log:
            print >>self.out, "Unknown error! please check the XSCALE.LP and fix the program."
            return

        # Re-scale by changing reference
        rescale_for = None
        if len(self.reject_method) == 0:
            rescale_for = self.reference_choice # may be None
        elif reference_idx is None:
            rescale_for = "bmed"
        
        if rescale_for is not None and len(xds_ascii_files) > 1:
            ref_num = xscale.decide_scaling_reference_based_on_bfactor(xscale_lp, rescale_for, return_as="index")
            if reference_idx != ref_num:
                print >>self.out, "Rescaling with %s" % rescale_for
                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))
                self.run_cycle(xds_ascii_files, reference_idx=ref_num)

        if len(self.reject_method) == 0:
            return

        # Remove bad data
        remove_idxes = []
        remove_reasons = {}

        if self.reject_method[0] == "framecc":
            print >>self.out, "Rejections based on frame CC"
            from yamtbx.dataproc.xds.command_line import xscale_cc_against_merged

            # list of [frame, n_all, n_common, cc] in the same order
            framecc = xscale_cc_against_merged.run(hklin=os.path.join(self.workdir, "xscale.hkl"),
                                                   output_dir=self.workdir,
                                                   nproc=self.nproc).values()
            if self.reject_params.framecc.method == "tukey":
                ccs = numpy.array(map(lambda x: x[3], reduce(lambda x,y:x+y,framecc)))
                ccs = ccs[ccs==ccs] # Remove nan
                q25, q75 = numpy.percentile(ccs, [25, 75])
                cc_cutoff  = q25 - self.reject_params.framecc.iqr_coeff * (q75 - q25)
                print >>self.out, " frameCC cutoff = %.4f (%.2f*IQR)" % (cc_cutoff, self.reject_params.framecc.iqr_coeff)
            else:
                cc_cutoff = self.reject_params.framecc.abs_cutoff
                print >>self.out, " frameCC cutoff = %.4f (value specified)" % cc_cutoff

            for i, cclist in enumerate(framecc):
                useframes = map(lambda x: x[0], filter(lambda x: x[3] > cc_cutoff, cclist))
                if len(useframes) == 0:
                    remove_idxes.append(i)
                    remove_reasons.setdefault(i, []).append("allbadframe")
                    continue

                f = xds_ascii_files[i]
                xac = XDS_ASCII(f)
                if set(useframes).issuperset(set(range(min(xac.iframe), max(xac.iframe)))):
                    continue # All useful frames.

                sel = xac.iframe == useframes[0]
                for x in useframes[1:]: sel |= xac.iframe == x
                if sum(sel) < 10: # XXX care I/sigma
                    remove_idxes.append(i)
                    remove_reasons.setdefault(i, []).append("allbadframe")
                    continue

                print >>self.out, "Extracting frames %s out of %d-%d in %s" % (",".join(map(str,useframes)),
                                                                               min(xac.iframe), max(xac.iframe),
                                                                               f)

                newf = self.request_file_modify(f)
                xac.write_selected(sel, newf)

            self.reject_method.pop(0) # Perform only once

        elif self.reject_method[0] == "lpstats":
            if "bfactor" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on B-factor outliers (%.2f*IQR)" % iqrc
                Bs = numpy.array(map(lambda x:x[1], xscalelp.get_k_b(xscale_lp)))
                q25, q75 = numpy.percentile(Bs, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, b in enumerate(Bs):
                    if b < lowlim or b > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_B")
                        count += 1

                print >>self.out, " %4d B-factor outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "em.b" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on error model b outliers (%.2f*IQR)" % iqrc
                bs = numpy.array(map(lambda x:x[1], xscalelp.get_ISa(xscale_lp)))
                q25, q75 = numpy.percentile(bs, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, b in enumerate(bs):
                    if b < lowlim or b > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_em.b")
                        count += 1

                print >>self.out, " %4d error model b outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "em.ab" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on error model a*b outliers (%.2f*IQR)" % iqrc
                vals = numpy.array(map(lambda x:x[0]*x[1], xscalelp.get_ISa(xscale_lp)))
                q25, q75 = numpy.percentile(vals, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, ab in enumerate(vals):
                    if ab < lowlim or ab > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_em.ab")
                        count += 1

                print >>self.out, " %4d error model a*b outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "rfactor" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on R-factor outliers (%.2f*IQR)" % iqrc
                rstats = xscalelp.get_rfactors_for_each(xscale_lp)
                vals = numpy.array(map(lambda x:rstats[x][-1][1], rstats)) # Read total R-factor
                q25, q75 = numpy.percentile(vals, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, v in enumerate(vals):
                    if v < lowlim or v > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_R")
                        count += 1

                print >>self.out, " %4d R-factor outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "pairwise_cc" in self.reject_params.lpstats.stats:
                corrs = xscalelp.get_pairwise_correlations(xscale_lp)
                if self.reject_params.lpstats.pwcc.method == "tukey":
                    q25, q75 = numpy.percentile(map(lambda x: x[3], corrs), [25, 75])
                    iqr = q75 - q25
                    lowlim = q25 - self.reject_params.lpstats.pwcc.iqr_coeff * iqr
                    print >>self.out, "Rejections based on pairwise_cc < %.4f (IQR=%.2f)" % (lowlim, iqr)
                else:
                    lowlim = self.reject_params.lpstats.pwcc.abs_cutoff
                    print >>self.out, "Rejections based on pairwise_cc < %.4f" % lowlim

                bad_corrs = filter(lambda x: x[3] < lowlim, corrs)
                idx_bad = {}
                for i, j, common_refs, corr, ratio, bfac in bad_corrs:
                    idx_bad[i] = idx_bad.get(i, 0) + 1
                    idx_bad[j] = idx_bad.get(j, 0) + 1

                idx_bad = idx_bad.items()
                idx_bad.sort(key=lambda x:x[1])
                count = 0
                for idx, badcount in reversed(idx_bad):
                    remove_idxes.append(idx-1)
                    remove_reasons.setdefault(idx-1, []).append("bad_pwcc")
                    bad_corrs = filter(lambda x: idx not in x[:2], bad_corrs)
                    if len(bad_corrs) == 0: break
                    fun_key = lambda x: x[3]
                    print >>self.out, " Removing idx=%d (CC %.3f..%.3f) remaining %d bad pairs" % (idx, 
                                                                                                   min(bad_corrs,key=fun_key)[3],
                                                                                                   max(bad_corrs,key=fun_key)[3],
                                                                                                   len(bad_corrs))
                    count += 1
                print >>self.out, " %4d pairwise CC outliers removed" % count

            self.reject_method.pop(0) # Perform only once
        elif self.reject_method[0] == "delta_cc1/2":
            print >>self.out, "Rejection based on delta_CC1/2 in %s shell" % self.delta_cchalf_bin
            table = xscalelp.read_stats_table(xscale_lp)
            i_stat = -1 if self.delta_cchalf_bin == "total" else -2
            prev_cchalf = table["cc_half"][i_stat]
            prev_nuniq = table["nuniq"][i_stat]
            # file_name->idx table
            remaining_files = collections.OrderedDict(map(lambda x: x[::-1], enumerate(xds_ascii_files)))

            # For consistent resolution limit
            inp_head = self.xscale_inp_head + "SPACE_GROUP_NUMBER= %s\nUNIT_CELL_CONSTANTS= %s\n\n" % (sg, cell)
            count = 0
            for i in xrange(len(xds_ascii_files)-1): # if only one file, cannot proceed.
                tmpdir = os.path.join(self.workdir, "reject_test_%.3d" % i)

                cchalf_list = xscale.calc_cchalf_by_removing(wdir=tmpdir, inp_head=inp_head,
                                                             inpfiles=remaining_files.keys(),
                                                             stat_bin=self.delta_cchalf_bin,
                                                             nproc=self.nproc,
                                                             nproc_each=self.nproc_each,
                                                             batchjobs=self.batchjobs)

                rem_idx, cc_i, nuniq_i = cchalf_list[0] # First (largest) is worst one to remove.
                rem_idx_in_org = remaining_files[remaining_files.keys()[rem_idx]]
                
                # Decision making by CC1/2
                print >>self.out, "DEBUG:: cycle %.3d remove %3d if %.2f*%d > %.2f*%d" % (i, rem_idx_in_org, 
                                                                                          cc_i, nuniq_i,
                                                                                          prev_cchalf, prev_nuniq)
                if cc_i*nuniq_i <= prev_cchalf*prev_nuniq: break
                print >>self.out, "Removing idx= %3d gained CC1/2 by %.2f" % (rem_idx_in_org, cc_i-prev_cchalf)

                prev_cchalf, prev_nuniq = cc_i, nuniq_i
                remove_idxes.append(rem_idx_in_org)
                remove_reasons.setdefault(rem_idx_in_org, []).append("bad_cchalf")
                del remaining_files[remaining_files.keys()[rem_idx]] # remove file from table
                count += 1

            print >>self.out, " %4d removed by DeltaCC1/2 method" % count

            if self.next_delta_cchalf_bin != []:
                self.delta_cchalf_bin = self.next_delta_cchalf_bin.pop(0)
            else:
                self.reject_method.pop(0)
        else:
            print >>self.out, "ERROR:: Unsupported reject_method (%s)" % reject_method

        # Remove duplicates
        remove_idxes = list(set(remove_idxes))
        remove_idxes = self.check_remove_list(remove_idxes)
        if len(remove_idxes) > 0:
            print >>self.out, "DEBUG:: Need to remove %d files" % len(remove_idxes)
            for i in sorted(remove_idxes): 
                print >>self.out, " %.3d %s" % (i, xds_ascii_files[i])
                self.removed_files.append(xds_ascii_files[i])
                self.removed_reason[xds_ascii_files[i]] = ",".join(remove_reasons[i])

        # Next run
        keep_idxes = filter(lambda x: x not in remove_idxes, xrange(len(xds_ascii_files)))
        if len(self.reject_method) > 0 or len(remove_idxes) > 0:
            self.workdir = self.request_next_workdir()
            self.run_cycle(map(lambda i: xds_ascii_files[i], keep_idxes))
        elif self.reference_choice is not None and len(keep_idxes) > 1:
            # Just re-scale with B reference
            ref_num = xscale.decide_scaling_reference_based_on_bfactor(xscale_lp, self.reference_choice, return_as="index")
            if reference_idx != ref_num:
                print >>self.out, "Rescaling2 with %s" % self.reference_choice
                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))
                self.run_cycle(map(lambda i: xds_ascii_files[i], keep_idxes), reference_idx=ref_num)
コード例 #5
0
ファイル: xscale_simple.py プロジェクト: keitaroyam/yamtbx
def run(params, xac_files):
    if len(xac_files) == 0:
        print "No XDS_ASCII.HKL files provided."
        return

    # Parse
    dmin_dict = {}
    if params.dmin_lst:
        for l in open(params.dmin_lst):
            sp = l.split()
            if len(sp) != 2: continue
            f, dmin = sp
            dmin_dict[f] = dmin

    xscale_inp_head = "!MINIMUM_I/SIGMA= 3\n\n" 
    if params.wfac1 is not None:
        xscale_inp_head += "WFAC1= %.3f\n" % params.wfac1

    if params.nproc:
        xscale_inp_head += "MAXIMUM_NUMBER_OF_PROCESSORS= %d\n" % params.nproc

    infos = {}
    d_max, d_min = 0, 100
    cells = []
    for xds_ascii in xac_files:
        info = get_xac_info(xds_ascii, get_nframes=params.frames_per_batch is not None)
        if xds_ascii in dmin_dict:
            dmax,dmin = info["resol_range"].split()
            info["resol_range_user"] = "******" % (dmax, dmin_dict[xds_ascii])

        infos[xds_ascii] = info


        resrng = map(float, info["resol_range"].split())
        d_max = max(d_max, resrng[0])
        d_min = min(d_min, resrng[1])
        cells.append(map(float, info["cell"].split()))

    if params.d_min is not None:
        d_min = max(params.d_min, d_min)

    if params.cell == "average":
        cell_sum = reduce(lambda x,y: map(lambda a: a[0]+a[1], zip(x,y)), cells)
        cell_mean = map(lambda x: x/float(len(cells)), cell_sum)

        if params.sgnum is not None: sgnum = str(params.sgnum)
        else: sgnum = infos[xac_files[0]]["spgr_num"]

        xscale_inp_head += " SPACE_GROUP_NUMBER= %s\n" % sgnum
        xscale_inp_head += " UNIT_CELL_CONSTANTS= %s\n" % " ".join(map(lambda x: "%.3f"%x, cell_mean))
  
    xscale_inp_head += make_shells(d_max, d_min, params.nbins) + "\n"
    xscale_inp_head += " OUTPUT_FILE= %s\n" % params.output
    xscale_inp_head += "  FRIEDEL'S_LAW= %s\n\n" % ("FALSE" if params.anomalous else "TRUE")

    prep_xscale_inp(params.workdir, xscale_inp_head, xac_files, infos, params.frames_per_batch, params.corrections)

    xscale.run_xscale(os.path.join(params.workdir, "XSCALE.INP"),
                      cbf_to_dat=params.cbf_to_dat,
                      use_tmpdir_if_available=params.use_tmpdir_if_available)

    if params.reference:
        print "Choosing reference data (reference=%s)" % params.reference
        ref_idx = xscale.decide_scaling_reference_based_on_bfactor(os.path.join(params.workdir, "XSCALE.LP"), params.reference, return_as="index")
        if ref_idx != 0:
            for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(params.workdir, f))
            prep_xscale_inp(params.workdir, xscale_inp_head, xac_files, infos, params.frames_per_batch, params.corrections, ref_idx=ref_idx)
            xscale.run_xscale(os.path.join(params.workdir, "XSCALE.INP"),
                              cbf_to_dat=params.cbf_to_dat,
                              use_tmpdir_if_available=params.use_tmpdir_if_available)
コード例 #6
0
def xds_sequence(root, params):
    print
    print os.path.relpath(root, params.topdir)

    init_lp = os.path.join(root, "INIT.LP")
    xparm = os.path.join(root, "XPARM.XDS")
    gxparm = os.path.join(root, "GXPARM.XDS")
    defpix_lp = os.path.join(root, "DEFPIX.LP")
    correct_lp = os.path.join(root, "CORRECT.LP")
    integrate_hkl = os.path.join(root, "INTEGRATE.HKL")
    xac_hkl = os.path.join(root, "XDS_ASCII.HKL")
    integrate_lp = os.path.join(root, "INTEGRATE.LP")
    spot_xds = os.path.join(root, "SPOT.XDS")
    xdsinp = os.path.join(root, "XDS.INP")

    assert os.path.isfile(xdsinp)
    if params.cell_prior.force: assert params.cell_prior.check

    xdsinp_dict = dict(get_xdsinp_keyword(xdsinp))

    if params.cell_prior.sgnum > 0:
        xs_prior = crystal.symmetry(params.cell_prior.cell,
                                    params.cell_prior.sgnum)
    else:
        xs_prior = None

    decilog = multi_out()
    decilog.register("log",
                     open(os.path.join(root, "decision.log"), "a"),
                     atexit_send_to=None)
    try:
        print >> decilog, "xds_sequence started at %s in %s\n" % (
            time.strftime("%Y-%m-%d %H:%M:%S"), root)

        if not kamo_test_installation.tst_xds():
            print >> decilog, "XDS is not installed or expired!!"
            return

        if params.show_progress:
            decilog.register("stdout", sys.stdout)

        if params.mode == "initial" and params.resume and os.path.isfile(
                correct_lp):
            print >> decilog, " Already processed."
            return

        if params.mode == "recycle" and not os.path.isfile(gxparm):
            print >> decilog, "GXPARM.XDS not found. Cannot do recycle."
            return

        if params.fast_delphi and (params.nproc is None or params.nproc > 1):
            delphi = optimal_delphi_by_nproc(xdsinp=xdsinp, nproc=params.nproc)
            print >> decilog, " Setting delphi to ", delphi
            modify_xdsinp(xdsinp, inp_params=[
                ("DELPHI", str(delphi)),
            ])

        if params.nproc is not None and params.nproc > 1:
            modify_xdsinp(xdsinp,
                          inp_params=[
                              ("MAXIMUM_NUMBER_OF_PROCESSORS",
                               str(params.nproc)),
                          ])

        if params.mode == "initial":
            modify_xdsinp(xdsinp, inp_params=[("JOB", "XYCORR INIT")])
            run_xds(wdir=root, show_progress=params.show_progress)
            initlp = InitLp(init_lp)
            first_bad = initlp.check_bad_first_frames()
            if first_bad:
                print >> decilog, " first frames look bad (too weak) exposure:", first_bad
                new_data_range = map(
                    int,
                    dict(get_xdsinp_keyword(xdsinp))["DATA_RANGE"].split())
                new_data_range[0] = first_bad[-1] + 1
                print >> decilog, " changing DATA_RANGE= to", new_data_range
                modify_xdsinp(xdsinp,
                              inp_params=[("JOB", "INIT"),
                                          ("DATA_RANGE",
                                           "%d %d" % tuple(new_data_range))])
                for f in xds_files.generated_by_INIT:
                    util.rotate_file(os.path.join(root, f), copy=False)
                run_xds(wdir=root, show_progress=params.show_progress)

            # Peak search
            modify_xdsinp(xdsinp, inp_params=[("JOB", "COLSPOT")])
            run_xds(wdir=root, show_progress=params.show_progress)
            if params.auto_frame_exclude_spot_based:
                sx = idxreflp.SpotXds(spot_xds)
                sx.set_xdsinp(xdsinp)
                spots = filter(lambda x: 5 < x[-1] < 30,
                               sx.collected_spots())  # low-res (5 A)
                frame_numbers = numpy.array(map(lambda x: int(x[2]) + 1,
                                                spots))
                data_range = map(
                    int,
                    dict(get_xdsinp_keyword(xdsinp))["DATA_RANGE"].split())
                # XXX this assumes SPOT_RANGE equals to DATA_RANGE. Is this guaranteed?
                h = numpy.histogram(frame_numbers,
                                    bins=numpy.arange(data_range[0],
                                                      data_range[1] + 2,
                                                      step=1))
                q14 = numpy.percentile(h[0], [25, 75])
                iqr = q14[1] - q14[0]
                cutoff = max(
                    h[0][h[0] <= iqr * 1.5 + q14[1]]) / 5  # magic number
                print >> decilog, "DEBUG:: IQR= %.2f, Q1/4= %s, cutoff= %.2f" % (
                    iqr, q14, cutoff)
                cut_frames = h[1][h[0] < cutoff]
                keep_frames = h[1][h[0] >= cutoff]
                print >> decilog, "DEBUG:: keep_frames=", keep_frames
                print >> decilog, "DEBUG::  cut_frames=", cut_frames

                if len(cut_frames) > 0:
                    cut_ranges = [
                        [cut_frames[0], cut_frames[0]],
                    ]
                    for fn in cut_frames:
                        if fn - cut_ranges[-1][1] <= 1: cut_ranges[-1][1] = fn
                        else: cut_ranges.append([fn, fn])

                    # Edit XDS.INP
                    cut_inp_str = "".join(
                        map(
                            lambda x: "EXCLUDE_DATA_RANGE= %6d %6d\n" % tuple(
                                x), cut_ranges))
                    open(xdsinp, "a").write("\n" + cut_inp_str)

                    # Edit SPOT.XDS
                    shutil.copyfile(spot_xds, spot_xds + ".org")
                    sx.write(open(spot_xds, "w"),
                             frame_selection=set(keep_frames))

            # Indexing
            if params.cell_prior.method == "use_first":
                modify_xdsinp(xdsinp,
                              inp_params=[
                                  ("JOB", "IDXREF"),
                                  ("UNIT_CELL_CONSTANTS", " ".join(
                                      map(lambda x: "%.3f" % x,
                                          params.cell_prior.cell))),
                                  ("SPACE_GROUP_NUMBER",
                                   "%d" % params.cell_prior.sgnum),
                              ])
            else:
                modify_xdsinp(xdsinp, inp_params=[("JOB", "IDXREF")])

            run_xds(wdir=root, show_progress=params.show_progress)
            print >> decilog, ""  # TODO indexing stats like indexed percentage here.

            if params.tryhard:
                try_indexing_hard(root,
                                  params.show_progress,
                                  decilog,
                                  known_sgnum=params.cell_prior.sgnum,
                                  known_cell=params.cell_prior.cell,
                                  tol_length=params.cell_prior.tol_length,
                                  tol_angle=params.cell_prior.tol_angle)

            if not os.path.isfile(xparm):
                print >> decilog, " Indexing failed."
                return

            if params.cell_prior.sgnum > 0:
                # Check anyway
                xsxds = XPARM(xparm).crystal_symmetry()
                cosets = reindex.reindexing_operators(
                    xs_prior, xsxds, params.cell_prior.tol_length,
                    params.cell_prior.tol_angle)
                if cosets.double_cosets is None:
                    if params.cell_prior.check:
                        print >> decilog, " Incompatible cell. Indexing failed."
                        return
                    else:
                        print >> decilog, " Warning: Incompatible cell."

                elif params.cell_prior.method == "symm_constraint_only":
                    cell = xsxds.unit_cell().change_basis(
                        cosets.combined_cb_ops()[0])
                    print >> decilog, " Trying symmetry-constrained cell parameter:", cell
                    modify_xdsinp(xdsinp,
                                  inp_params=[
                                      ("JOB", "IDXREF"),
                                      ("UNIT_CELL_CONSTANTS", " ".join(
                                          map(lambda x: "%.3f" % x,
                                              cell.parameters()))),
                                      ("SPACE_GROUP_NUMBER",
                                       "%d" % params.cell_prior.sgnum),
                                  ])
                    for f in xds_files.generated_by_IDXREF:
                        util.rotate_file(os.path.join(root, f),
                                         copy=(f == "SPOT.XDS"))

                    run_xds(wdir=root, show_progress=params.show_progress)

                    if not os.path.isfile(xparm):
                        print >> decilog, " Indexing failed."
                        return

                    # Check again
                    xsxds = XPARM(xparm).crystal_symmetry()
                    if not xsxds.unit_cell().is_similar_to(
                            xs_prior.unit_cell(), params.cell_prior.tol_length,
                            params.cell_prior.tol_angle):
                        print >> decilog, "  Resulted in different cell. Indexing failed."
                        return

        elif params.mode == "recycle":
            print >> decilog, " Start recycle. original ISa= %.2f" % correctlp.get_ISa(
                correct_lp, check_valid=True)
            for f in xds_files.generated_after_DEFPIX + ("XPARM.XDS",
                                                         "plot_integrate.log"):
                util.rotate_file(os.path.join(root, f), copy=True)
            shutil.copyfile(gxparm + ".1", xparm)
        else:
            raise "Unknown mode (%s)" % params.mode

        # To Integration
        modify_xdsinp(xdsinp,
                      inp_params=[("JOB", "DEFPIX INTEGRATE"),
                                  ("INCLUDE_RESOLUTION_RANGE", "50 0")])
        run_xds(wdir=root, show_progress=params.show_progress)
        if os.path.isfile(integrate_lp):
            xds_plot_integrate.run(integrate_lp,
                                   os.path.join(root, "plot_integrate.log"))
        if not os.path.isfile(integrate_hkl):
            print >> decilog, " Integration failed."
            return

        # Make _noscale.HKL if needed
        if params.no_scaling:
            bk_prefix = make_backup(("XDS.INP", ), wdir=root, quiet=True)
            xparm_obj = XPARM(xparm)
            modify_xdsinp(xdsinp,
                          inp_params=[
                              ("JOB", "CORRECT"),
                              ("CORRECTIONS", ""),
                              ("NBATCH", "1"),
                              ("MINIMUM_I/SIGMA", "50"),
                              ("REFINE(CORRECT)", ""),
                              ("UNIT_CELL_CONSTANTS", " ".join(
                                  map(lambda x: "%.3f" % x,
                                      xparm_obj.unit_cell))),
                              ("SPACE_GROUP_NUMBER",
                               "%d" % xparm_obj.spacegroup),
                          ])
            print >> decilog, " running CORRECT without empirical scaling"
            run_xds(wdir=root, show_progress=params.show_progress)
            for f in xds_files.generated_by_CORRECT + ("XDS.INP", ):
                ff = os.path.join(root, f)
                if not os.path.isfile(ff): continue
                if ff.endswith(".cbf"):
                    os.remove(ff)
                else:
                    os.rename(ff, ff + "_noscale")

            revert_files(("XDS.INP", ), bk_prefix, wdir=root, quiet=True)

        # Run pointless
        pointless_integrate = {}
        if params.use_pointless:
            worker = Pointless()
            pointless_integrate = worker.run_for_symm(
                xdsin=integrate_hkl,
                logout=os.path.join(root, "pointless_integrate.log"))
            if "symm" in pointless_integrate:
                symm = pointless_integrate["symm"]
                print >> decilog, " pointless using INTEGRATE.HKL suggested", symm.space_group_info(
                )
                if xs_prior:
                    if xtal.is_same_space_group_ignoring_enantiomorph(
                            symm.space_group(), xs_prior.space_group()):
                        print >> decilog, " which is consistent with given symmetry."
                    elif xtal.is_same_laue_symmetry(symm.space_group(),
                                                    xs_prior.space_group()):
                        print >> decilog, " which has consistent Laue symmetry with given symmetry."
                    else:
                        print >> decilog, " which is inconsistent with given symmetry."

                sgnum = symm.space_group_info().type().number()
                cell = " ".join(
                    map(lambda x: "%.2f" % x,
                        symm.unit_cell().parameters()))
                modify_xdsinp(xdsinp,
                              inp_params=[("SPACE_GROUP_NUMBER", "%d" % sgnum),
                                          ("UNIT_CELL_CONSTANTS", cell)])
            else:
                print >> decilog, " pointless failed."

        flag_do_not_change_symm = False

        if xs_prior and params.cell_prior.force:
            modify_xdsinp(xdsinp,
                          inp_params=[("UNIT_CELL_CONSTANTS", " ".join(
                              map(lambda x: "%.3f" % x,
                                  params.cell_prior.cell))),
                                      ("SPACE_GROUP_NUMBER",
                                       "%d" % params.cell_prior.sgnum)])
            flag_do_not_change_symm = True
        elif params.cell_prior.method == "correct_only":
            xsxds = XPARM(xparm).crystal_symmetry()
            cosets = reindex.reindexing_operators(xs_prior, xsxds,
                                                  params.cell_prior.tol_length,
                                                  params.cell_prior.tol_angle)
            if cosets.double_cosets is not None:
                cell = xsxds.unit_cell().change_basis(
                    cosets.combined_cb_ops()[0])
                print >> decilog, " Using given symmetry in CORRECT with symmetry constraints:", cell
                modify_xdsinp(xdsinp,
                              inp_params=[
                                  ("UNIT_CELL_CONSTANTS", " ".join(
                                      map(lambda x: "%.3f" % x,
                                          cell.parameters()))),
                                  ("SPACE_GROUP_NUMBER",
                                   "%d" % params.cell_prior.sgnum),
                              ])
                flag_do_not_change_symm = True
            else:
                print >> decilog, " Tried to use given symmetry in CORRECT, but cell in integration is incompatible."

        # Do Scaling
        modify_xdsinp(xdsinp, inp_params=[
            ("JOB", "CORRECT"),
        ])

        run_xds(wdir=root, show_progress=params.show_progress)

        if not os.path.isfile(xac_hkl):
            print >> decilog, " CORRECT failed."
            return

        if not os.path.isfile(gxparm):
            print >> decilog, " Refinement in CORRECT failed."

        print >> decilog, " OK. ISa= %.2f" % correctlp.get_ISa(
            correct_lp, check_valid=True)

        ret = calc_merging_stats(xac_hkl)
        if params.cut_resolution:
            if ret is not None and ret[0] is not None:
                d_min = ret[0]
                modify_xdsinp(xdsinp,
                              inp_params=[("JOB", "CORRECT"),
                                          ("INCLUDE_RESOLUTION_RANGE",
                                           "50 %.2f" % d_min)])
                print >> decilog, " Re-scale at %.2f A" % d_min
                os.rename(os.path.join(root, "CORRECT.LP"),
                          os.path.join(root, "CORRECT_fullres.LP"))
                os.rename(xac_hkl, os.path.join(root, "XDS_ASCII_fullres.HKL"))
                run_xds(wdir=root, show_progress=params.show_progress)
                print >> decilog, " OK. ISa= %.2f" % correctlp.get_ISa(
                    correct_lp, check_valid=True)
                print >> decilog, " (Original files are saved as *_fullres.*)"
            else:
                print >> decilog, "error: Can't decide resolution."

        last_ISa = correctlp.get_ISa(correct_lp, check_valid=True)

        # Run pointless and (if result is different from INTEGRATE) re-scale.
        if params.use_pointless:
            worker = Pointless()
            pointless_correct = worker.run_for_symm(
                xdsin=xac_hkl,
                logout=os.path.join(root, "pointless_correct.log"))
            pointless_best_symm = None

            if "symm" in pointless_correct:
                symm = pointless_correct["symm"]
                need_rescale = False

                if pointless_integrate.get("symm"):
                    symm_by_integrate = pointless_integrate["symm"]

                    if not xtal.is_same_laue_symmetry(
                            symm_by_integrate.space_group(),
                            symm.space_group()):
                        print >> decilog, "pointless suggested %s, which is different Laue symmetry from INTEGRATE.HKL (%s)" % (
                            symm.space_group_info(),
                            symm_by_integrate.space_group_info())
                        prob_integrate = pointless_integrate.get(
                            "laue_prob", float("nan"))
                        prob_correct = pointless_correct.get(
                            "laue_prob", float("nan"))

                        print >> decilog, " Prob(%s |INTEGRATE), Prob(%s |CORRECT) = %.4f, %.4f." % (
                            symm_by_integrate.space_group_info(),
                            symm.space_group_info(), prob_integrate,
                            prob_correct)
                        if prob_correct > prob_integrate:
                            need_rescale = True
                            pointless_best_symm = symm
                        else:
                            pointless_best_symm = symm_by_integrate
                else:
                    need_rescale = True
                    pointless_best_symm = symm
                    print >> decilog, "pointless using XDS_ASCII.HKL suggested %s" % symm.space_group_info(
                    )
                    if xs_prior:
                        if xtal.is_same_space_group_ignoring_enantiomorph(
                                symm.space_group(), xs_prior.space_group()):
                            print >> decilog, " which is consistent with given symmetry."
                        elif xtal.is_same_laue_symmetry(
                                symm.space_group(), xs_prior.space_group()):
                            print >> decilog, " which has consistent Laue symmetry with given symmetry."
                        else:
                            print >> decilog, " which is inconsistent with given symmetry."

                if need_rescale and not flag_do_not_change_symm:
                    sgnum = symm.space_group_info().type().number()
                    cell = " ".join(
                        map(lambda x: "%.2f" % x,
                            symm.unit_cell().parameters()))
                    modify_xdsinp(xdsinp,
                                  inp_params=[
                                      ("JOB", "CORRECT"),
                                      ("SPACE_GROUP_NUMBER", "%d" % sgnum),
                                      ("UNIT_CELL_CONSTANTS", cell),
                                      ("INCLUDE_RESOLUTION_RANGE", "50 0")
                                  ])

                    run_xds(wdir=root, show_progress=params.show_progress)

                    ret = calc_merging_stats(xac_hkl)

                    if params.cut_resolution:
                        if ret is not None and ret[0] is not None:
                            d_min = ret[0]
                            modify_xdsinp(xdsinp,
                                          inp_params=[
                                              ("JOB", "CORRECT"),
                                              ("INCLUDE_RESOLUTION_RANGE",
                                               "50 %.2f" % d_min)
                                          ])
                            print >> decilog, " Re-scale at %.2f A" % d_min
                            os.rename(os.path.join(root, "CORRECT.LP"),
                                      os.path.join(root, "CORRECT_fullres.LP"))
                            os.rename(
                                xac_hkl,
                                os.path.join(root, "XDS_ASCII_fullres.HKL"))
                            run_xds(wdir=root,
                                    show_progress=params.show_progress)
                            print >> decilog, " OK. ISa= %.2f" % correctlp.get_ISa(
                                correct_lp, check_valid=True)
                            print >> decilog, " (Original files are saved as *_fullres.*)"
                        else:
                            print >> decilog, "error: Can't decide resolution."
                            for f in ("CORRECT_fullres.LP",
                                      "XDS_ASCII_fullres.HKL"):
                                if os.path.isfile(os.path.join(root, f)):
                                    print >> decilog, "removing", f
                                    os.remove(os.path.join(root, f))

                    ISa = correctlp.get_ISa(correct_lp, check_valid=True)

                    if ISa >= last_ISa or last_ISa != last_ISa:  # if improved or last_ISa is nan
                        print >> decilog, "ISa improved= %.2f" % ISa
                    else:
                        print >> decilog, "ISa got worse= %.2f" % ISa

            if pointless_best_symm:
                xac_symm = XDS_ASCII(xac_hkl, read_data=False).symm
                if not xtal.is_same_space_group_ignoring_enantiomorph(
                        xac_symm.space_group(),
                        pointless_best_symm.space_group()):
                    if xtal.is_same_laue_symmetry(
                            xac_symm.space_group(),
                            pointless_best_symm.space_group()):
                        tmp = "same Laue symmetry"
                    else:
                        tmp = "different Laue symmetry"
                    print >> decilog, "WARNING: symmetry in scaling is different from Pointless result (%s)." % tmp

        run_xdsstat(wdir=root)
        print
        if params.make_report: html_report.make_individual_report(root, root)
    except:
        print >> decilog, traceback.format_exc()
    finally:
        print >> decilog, "\nxds_sequence finished at %s" % time.strftime(
            "%Y-%m-%d %H:%M:%S")
        decilog.close()
コード例 #7
0
def try_indexing_hard(wdir,
                      show_progress,
                      decilog,
                      known_sgnum=None,
                      known_cell=None,
                      tol_length=None,
                      tol_angle=None):
    idxref_lp = os.path.join(wdir, "IDXREF.LP")
    xdsinp = os.path.join(wdir, "XDS.INP")

    lp_org = idxreflp.IdxrefLp(idxref_lp)

    if lp_org.is_cell_maybe_half():
        backup_needed = ("XDS.INP", ) + xds_files.generated_by_IDXREF

        print >> decilog, " !! Cell may be halved. Trying doubled cell."
        bk_prefix = make_backup(backup_needed, wdir=wdir, quiet=True)

        cell = lp_org.deduce_correct_cell_based_on_integerness()
        cell = " ".join(map(lambda x: "%.2f" % x, cell.parameters()))
        modify_xdsinp(xdsinp,
                      inp_params=[("JOB", "IDXREF"),
                                  ("SPACE_GROUP_NUMBER", "1"),
                                  ("UNIT_CELL_CONSTANTS", cell)])

        for f in xds_files.generated_by_IDXREF:
            util.rotate_file(os.path.join(wdir, f), copy=(f == "SPOT.XDS"))
        run_xds(wdir=wdir, show_progress=show_progress)

        if idxreflp.IdxrefLp(idxref_lp).is_cell_maybe_half():
            revert_files(backup_needed, bk_prefix, wdir=wdir, quiet=True)

            print >> decilog, "  .. not solved. Next, try decreasing SEPMIN= and CLUSTER_RADIUS=."
            bk_prefix = make_backup(backup_needed, wdir=wdir, quiet=True)

            modify_xdsinp(xdsinp,
                          inp_params=[("JOB", "IDXREF"), ("SEPMIN", "4"),
                                      ("CLUSTER_RADIUS", "2")])
            for f in xds_files.generated_by_IDXREF:
                util.rotate_file(os.path.join(wdir, f), copy=(f == "SPOT.XDS"))
            run_xds(wdir=wdir, show_progress=show_progress)

            if idxreflp.IdxrefLp(idxref_lp).is_cell_maybe_half():
                print >> decilog, "  .. not solved. Give up."
                revert_files(backup_needed, bk_prefix, wdir=wdir, quiet=True)
        else:
            print >> decilog, "  Now OK."
            remove_backups(backup_needed, bk_prefix, wdir=wdir)
            modify_xdsinp(xdsinp, inp_params=[
                ("SPACE_GROUP_NUMBER", "0"),
            ])

    # If Cell hint exists, try to use it..
    if known_sgnum > 0:
        flag_try_cell_hint = False
        xparm = os.path.join(wdir, "XPARM.XDS")
        if not os.path.isfile(xparm):
            flag_try_cell_hint = True
        else:
            xsxds = XPARM(xparm).crystal_symmetry()

            xsref = crystal.symmetry(known_cell, known_sgnum)
            cosets = reindex.reindexing_operators(xsref, xsxds, tol_length,
                                                  tol_angle)

            if cosets.double_cosets is None: flag_try_cell_hint = True

        if flag_try_cell_hint:
            print >> decilog, " Worth trying to use prior cell for indexing."
            modify_xdsinp(xdsinp,
                          inp_params=[
                              ("JOB", "IDXREF"),
                              ("UNIT_CELL_CONSTANTS",
                               " ".join(map(lambda x: "%.3f" % x,
                                            known_cell))),
                              ("SPACE_GROUP_NUMBER", "%d" % known_sgnum),
                          ])
            for f in xds_files.generated_by_IDXREF:
                util.rotate_file(os.path.join(wdir, f), copy=(f == "SPOT.XDS"))
            run_xds(wdir=wdir, show_progress=False)
            modify_xdsinp(xdsinp, inp_params=[
                ("SPACE_GROUP_NUMBER", "0"),
            ])
コード例 #8
0
ファイル: spotfinder.py プロジェクト: robertbuecker/yamtbx
def find_spots(img_file, params):
    """
    Use XDS to locate spots.
    If params.xds.do_defpix is true, DEFPIX will be run. For DEFPIX, dummy XPARM.XDS is needed. Thanks to DEFPIX, we can mask beam stop shadow and remove areas outside the resolution range.
    If false, we need to set TRUSTED_REGION to exclude regions outside resolution range, but it is independent of beam center. Maybe we should remove spots outside the resolution range after XDS run?
    """

    # Test if ramdisk available
    if os.path.isdir("/dev/shm"):
        work_dir = tempfile.mkdtemp(
            prefix="shika_x_" +
            os.path.splitext(os.path.basename(img_file))[0],
            dir="/dev/shm")
    else:
        work_dir = os.path.join(
            params.work_dir,
            "xds_" + os.path.splitext(os.path.basename(img_file))[0])

    xdsinp = os.path.join(work_dir, "XDS.INP")
    spot_xds = os.path.join(work_dir, "SPOT.XDS")

    if not os.path.exists(work_dir):
        os.mkdir(work_dir)

    template_str, min_frame, max_frame = dataset.group_img_files_template(
        [img_file])[0]

    im = XIO.Image(img_file)

    # Remove lines if None (means to use default)
    params_maps = [
        ("strong_pixel", "STRONG_PIXEL="),
        ("minimum_number_of_pixels_in_a_spot",
         "MINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT="),
        ("background_pixel", "BACKGROUND_PIXEL="),
        ("maximum_number_of_strong_pixels",
         "MAXIMUM_NUMBER_OF_STRONG_PIXELS="),
        ("spot_maximum_centroid", "SPOT_MAXIMUM-CENTROID="),
        ("reflecting_range", "REFLECTING_RANGE="),
        ("value_range_for_trusted_detector_pixels",
         "VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS="),
    ]
    tmp = xds_inp_template.splitlines()
    for p, x in params_maps:
        if getattr(params.xds, p) is None:
            tmp = filter(lambda s: not s.startswith(x), tmp)
    inp_template = "\n".join(tmp)

    # Prepare XDS.INP
    inp_str = inp_template % dict(
        template=os.path.relpath(template_str, work_dir),
        framenum=min_frame,
        orgx=im.header["BeamX"] / im.header["PixelX"],
        orgy=im.header["BeamY"] / im.header["PixelY"],
        distance=im.header["Distance"],
        osc_range=im.header["PhiWidth"],
        wavelength=im.header["Wavelength"],
        strong_pixel=params.xds.strong_pixel,
        min_pixels=params.xds.minimum_number_of_pixels_in_a_spot,
        background_pixel=params.xds.background_pixel,
        max_strong_pixels=params.xds.maximum_number_of_strong_pixels,
        spot_maximum_centroid=params.xds.spot_maximum_centroid,
        reflecting_range=params.xds.reflecting_range,
        nx=im.header["Width"],
        ny=im.header["Height"],
        qx=im.header["PixelX"],
        qy=im.header["PixelY"],
        defpix_trusted1=params.xds.value_range_for_trusted_detector_pixels[0],
        defpix_trusted2=params.xds.value_range_for_trusted_detector_pixels[1])

    open(xdsinp, "w").write(inp_str)

    if params.xds.do_defpix:
        xp = xparm.XPARM()
        xp.set_info_from_xdsinp(xdsinp)
        open(os.path.join(work_dir, "XPARM.XDS"), "w").write(xp.xparm_str())
        modify_xdsinp(xdsinp,
                      inp_params=[("JOB", "XYCORR INIT DEFPIX"),
                                  ("INCLUDE_RESOLUTION_RANGE",
                                   res_range_for_xds(params.distl.res.outer,
                                                     params.distl.res.inner))])
        call("xds",
             wdir=work_dir,
             stdout=open(os.path.join(work_dir, "xds.log"), "w"))
        shutil.copy(os.path.join(work_dir, "BKGPIX.cbf"),
                    os.path.join(work_dir, "BKGINIT.cbf"))
        modify_xdsinp(xdsinp, inp_params=[("JOB", "COLSPOT")])
    else:
        modify_xdsinp(xdsinp,
                      inp_params=[
                          ("TRUSTED_REGION",
                           res_range_to_trusted_region(params.distl.res.outer,
                                                       params.distl.res.inner,
                                                       im.header))
                      ])
        open(os.path.join(work_dir, "xds.log"), "w").write("")

    # Run XDS
    rotate_file(spot_xds)
    call("xds",
         wdir=work_dir,
         stdout=open(os.path.join(work_dir, "xds.log"), "a"))

    # Extract results
    spots = []  # (x, y, d, intensity)
    if os.path.isfile(spot_xds):
        for l in open(spot_xds):
            x, y, z, intensity = map(lambda x: float(x), l.strip().split())
            d = coord_to_resol(x, y, im.header)
            spots.append((x, y, d, intensity))

    # Delete dir
    shutil.rmtree(work_dir)

    return spots
コード例 #9
0
ファイル: xscale_simple.py プロジェクト: YonekuraLab/yamtbx
def run(params, xac_files):
    if len(xac_files) == 0:
        print "No XDS_ASCII.HKL files provided."
        return

    # Parse
    dmin_dict = {}
    if params.dmin_lst:
        for l in open(params.dmin_lst):
            sp = l.split()
            if len(sp) != 2: continue
            f, dmin = sp
            dmin_dict[f] = dmin

    xscale_inp_head = "!SNRC= 3 ! was MINIMUM_I/SIGMA= before BUILT=20191015\n\n"
    if params.wfac1 is not None:
        xscale_inp_head += "WFAC1= %.3f\n" % params.wfac1

    if params.nproc:
        xscale_inp_head += "MAXIMUM_NUMBER_OF_PROCESSORS= %d\n" % params.nproc

    infos = {}
    d_max, d_min = 0, 100
    cells = []
    for xds_ascii in xac_files:
        info = get_xac_info(xds_ascii,
                            get_nframes=params.frames_per_batch is not None)
        if xds_ascii in dmin_dict:
            dmax, dmin = info["resol_range"].split()
            info["resol_range_user"] = "******" % (dmax, dmin_dict[xds_ascii])

        infos[xds_ascii] = info

        resrng = map(float, info["resol_range"].split())
        d_max = max(d_max, resrng[0])
        d_min = min(d_min, resrng[1])
        cells.append(map(float, info["cell"].split()))

    if params.d_min is not None:
        d_min = max(params.d_min, d_min)

    if params.cell == "average":
        cell_sum = reduce(lambda x, y: map(lambda a: a[0] + a[1], zip(x, y)),
                          cells)
        cell_mean = map(lambda x: x / float(len(cells)), cell_sum)

        if params.sgnum is not None: sgnum = str(params.sgnum)
        else: sgnum = infos[xac_files[0]]["spgr_num"]

        xscale_inp_head += " SPACE_GROUP_NUMBER= %s\n" % sgnum
        xscale_inp_head += " UNIT_CELL_CONSTANTS= %s\n" % " ".join(
            map(lambda x: "%.3f" % x, cell_mean))

    xscale_inp_head += make_shells(d_max, d_min, params.nbins) + "\n"
    xscale_inp_head += " OUTPUT_FILE= %s\n" % params.output
    xscale_inp_head += "  FRIEDEL'S_LAW= %s\n\n" % ("FALSE" if params.anomalous
                                                    else "TRUE")

    prep_xscale_inp(params.workdir, xscale_inp_head, xac_files, infos,
                    params.frames_per_batch, params.corrections)

    xscale.run_xscale(os.path.join(params.workdir, "XSCALE.INP"),
                      cbf_to_dat=params.cbf_to_dat,
                      use_tmpdir_if_available=params.use_tmpdir_if_available)

    if params.reference:
        print "Choosing reference data (reference=%s)" % params.reference
        ref_idx = xscale.decide_scaling_reference_based_on_bfactor(
            os.path.join(params.workdir, "XSCALE.LP"),
            params.reference,
            return_as="index")
        if ref_idx != 0:
            for f in "XSCALE.INP", "XSCALE.LP":
                util.rotate_file(os.path.join(params.workdir, f))
            prep_xscale_inp(params.workdir,
                            xscale_inp_head,
                            xac_files,
                            infos,
                            params.frames_per_batch,
                            params.corrections,
                            ref_idx=ref_idx)
            xscale.run_xscale(
                os.path.join(params.workdir, "XSCALE.INP"),
                cbf_to_dat=params.cbf_to_dat,
                use_tmpdir_if_available=params.use_tmpdir_if_available)
コード例 #10
0
ファイル: spotfinder.py プロジェクト: harumome/kamo
def find_spots(img_file, params):
    """
    Use XDS to locate spots.
    If params.xds.do_defpix is true, DEFPIX will be run. For DEFPIX, dummy XPARM.XDS is needed. Thanks to DEFPIX, we can mask beam stop shadow and remove areas outside the resolution range.
    If false, we need to set TRUSTED_REGION to exclude regions outside resolution range, but it is independent of beam center. Maybe we should remove spots outside the resolution range after XDS run?
    """

    # Test if ramdisk available
    if os.path.isdir("/dev/shm"):
        work_dir = tempfile.mkdtemp(prefix="shika_x_"+os.path.splitext(os.path.basename(img_file))[0], dir="/dev/shm")
    else:
        work_dir = os.path.join(params.work_dir, "xds_"+os.path.splitext(os.path.basename(img_file))[0])

    xdsinp = os.path.join(work_dir, "XDS.INP")
    spot_xds = os.path.join(work_dir, "SPOT.XDS")

    if not os.path.exists(work_dir):
        os.mkdir(work_dir)

    template_str, min_frame, max_frame = dataset.group_img_files_template([img_file])[0]

    im = XIO.Image(img_file)

    # Remove lines if None (means to use default)
    params_maps = [("strong_pixel", "STRONG_PIXEL="),
                   ("minimum_number_of_pixels_in_a_spot", "MINIMUM_NUMBER_OF_PIXELS_IN_A_SPOT="),
                   ("background_pixel", "BACKGROUND_PIXEL="),
                   ("maximum_number_of_strong_pixels", "MAXIMUM_NUMBER_OF_STRONG_PIXELS="),
                   ("spot_maximum_centroid", "SPOT_MAXIMUM-CENTROID="),
                   ("reflecting_range", "REFLECTING_RANGE="),
                   ("value_range_for_trusted_detector_pixels", "VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS="),
                   ]
    tmp = xds_inp_template.splitlines()
    for p, x in params_maps:
        if getattr(params.xds, p) is None:
            tmp = filter(lambda s:not s.startswith(x), tmp)
    inp_template = "\n".join(tmp)

    # Prepare XDS.INP
    inp_str = inp_template%dict(template=os.path.relpath(template_str, work_dir),
                                framenum=min_frame,
                                orgx=im.header["BeamX"]/im.header["PixelX"],
                                orgy=im.header["BeamY"]/im.header["PixelY"],
                                distance=im.header["Distance"],
                                osc_range=im.header["PhiWidth"],
                                wavelength=im.header["Wavelength"],
                                strong_pixel=params.xds.strong_pixel,
                                min_pixels=params.xds.minimum_number_of_pixels_in_a_spot,
                                background_pixel=params.xds.background_pixel,
                                max_strong_pixels=params.xds.maximum_number_of_strong_pixels,
                                spot_maximum_centroid=params.xds.spot_maximum_centroid,
                                reflecting_range=params.xds.reflecting_range,
                                nx=im.header["Width"], ny=im.header["Height"],
                                qx=im.header["PixelX"], qy=im.header["PixelY"],
                                defpix_trusted1=params.xds.value_range_for_trusted_detector_pixels[0],
                                defpix_trusted2=params.xds.value_range_for_trusted_detector_pixels[1]
                                )

    open(xdsinp, "w").write(inp_str)

    if params.xds.do_defpix:
        xp = xparm.XPARM()
        xp.set_info_from_xdsinp(xdsinp)
        open(os.path.join(work_dir, "XPARM.XDS"), "w").write(xp.xparm_str())
        modify_xdsinp(xdsinp, inp_params=[("JOB", "XYCORR INIT DEFPIX"),
                                          ("INCLUDE_RESOLUTION_RANGE", res_range_for_xds(params.distl.res.outer, params.distl.res.inner))
                                          ])
        call("xds", wdir=work_dir, stdout=open(os.path.join(work_dir, "xds.log"), "w"))
        shutil.copy(os.path.join(work_dir, "BKGPIX.cbf"), os.path.join(work_dir, "BKGINIT.cbf"))
        modify_xdsinp(xdsinp, inp_params=[("JOB","COLSPOT")])
    else:
        modify_xdsinp(xdsinp, inp_params=[("TRUSTED_REGION", res_range_to_trusted_region(params.distl.res.outer, params.distl.res.inner, im.header))
                                          ])
        open(os.path.join(work_dir, "xds.log"), "w").write("")

    # Run XDS
    rotate_file(spot_xds)
    call("xds", wdir=work_dir, stdout=open(os.path.join(work_dir, "xds.log"), "a"))

    # Extract results
    spots = [] # (x, y, d, intensity)
    if os.path.isfile(spot_xds):
        for l in open(spot_xds):
            x, y, z, intensity = map(lambda x:float(x), l.strip().split())
            d = coord_to_resol(x, y, im.header)
            spots.append((x, y, d, intensity))

    # Delete dir
    shutil.rmtree(work_dir)

    return spots
コード例 #11
0
ファイル: xscale.py プロジェクト: harumome/kamo
    def run_cycle(self, xds_ascii_files, reference_idx=None):
        if len(xds_ascii_files) == 0:
            print >>self.out, "Error: no files given."
            return

        xscale_inp = os.path.join(self.workdir, "XSCALE.INP")
        xscale_lp = os.path.join(self.workdir, "XSCALE.LP")

        # Get averaged cell for scaling
        sg, cell = self.average_cells(xds_ascii_files)
        
        # Choose directory containing XDS_ASCII.HKL and set space group (but how??)
        inp_out = open(xscale_inp, "w")
        inp_out.write("MAXIMUM_NUMBER_OF_PROCESSORS= %d\n" % self.nproc)
        inp_out.write("SPACE_GROUP_NUMBER= %s\nUNIT_CELL_CONSTANTS= %s\n\n" % (sg, cell))
        inp_out.write(self.xscale_inp_head)

        for i, xds_ascii in enumerate(xds_ascii_files):
            f = self.altfile.get(xds_ascii, xds_ascii)
            tmp = min(os.path.relpath(f, self.workdir), f, key=lambda x:len(x))
            refstr = "*" if i==reference_idx else " "
            inp_out.write(" INPUT_FILE=%s%s\n" % (refstr,tmp))
            if len(self.xscale_params.corrections) != 3:
                inp_out.write("  CORRECTIONS= %s\n" % " ".join(self.xscale_params.corrections))
            if self.xscale_params.frames_per_batch is not None:
                frame_range = XDS_ASCII(f, read_data=False).get_frame_range()
                nframes = frame_range[1] - frame_range[0]
                nbatch = int(numpy.ceil(nframes / self.xscale_params.frames_per_batch))
                print >>self.out, "frame range of %s is %d,%d setting NBATCH= %d" % (f, frame_range[0], frame_range[1], nbatch)
                inp_out.write("  NBATCH= %d\n" % nbatch)

        inp_out.close()

        print >>self.out, "DEBUG:: running xscale with %3d files.." % len(xds_ascii_files)
        xscale.run_xscale(xscale_inp)
        #util.call(xscale_comm, wdir=self.workdir)

        cbfouts = glob.glob(os.path.join(self.workdir, "*.cbf"))
        if len(cbfouts) > 0:
            # This doesn't affect anything, so I don't want program to stop if this failed
            try:
                xscalelp.cbf_to_dat(xscale_lp)
                for f in cbfouts: os.remove(f)
            except:
                print >>self.out, traceback.format_exc()

        xscale_log = open(xscale_lp).read()
        if "!!! ERROR !!! INSUFFICIENT NUMBER OF COMMON STRONG REFLECTIONS." in xscale_log:
            print >>self.out, "DEBUG:: Need to choose files."

            # From XDS ver. March 1, 2015, it kindly informs which dataset has no common reflections.
            # ..but does not print the table. Sometimes only one dataset is left. Should we make table by ourselves?
            # Older versions just print correlation table and stop.
            if "CORRELATIONS BETWEEN INPUT DATA SETS AFTER CORRECTIONS" in xscale_log:
                G = xscalelp.construct_data_graph(xscale_lp, min_common_refs=10)
                #nx.write_dot(G, os.path.join(self.workdir, "common_set_graph.dot"))
                cliques = [c for c in nx.find_cliques(G)]
                cliques.sort(key=lambda x:len(x))
                if self._counter == 1:
                    max_clique = cliques[-1]
                else:
                    idx_prevfile = 1 if self.reference_file else 0
                    max_clique = filter(lambda x: idx_prevfile in x, cliques)[-1] # xscale.hkl must be included!

                if self.reference_file:
                    max_clique = [0,] + filter(lambda x: x!=0, max_clique)

                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))

                try_later = map(lambda i: xds_ascii_files[i], filter(lambda x: x not in max_clique, G.nodes()))

                print >>self.out, "DEBUG:: %d files can be merged. %d files will be merged later." % (len(max_clique),
                                                                                                      len(try_later))
                print >>self.out, "DEBUG:: %d files are of no use." % (len(xds_ascii_files)-len(G.nodes()))
                for i in filter(lambda j: j not in G.nodes(), xrange(len(xds_ascii_files))):
                    self.removed_files.append(xds_ascii_files[i])
                    self.removed_reason[xds_ascii_files[i]] = "no_common_refls"

                self.run_cycle(map(lambda i: xds_ascii_files[i], max_clique))

                assert len(try_later) <= 0 # Never be the case with newer xscale!! (if the case, check_remove_list() should be modified to skip_num+=1
                if len(try_later) > 0:
                    print >>self.out, "Trying to merge %d remaining files.." % len(try_later)
                    next_files = [os.path.join(self.workdir, "xscale.hkl")] + try_later
                    if self.reference_file: next_files = [self.reference_file,] + next_files
                    self.workdir = self.request_next_workdir()
                    self.run_cycle(next_files)
                    return
            else:
                bad_idxes = xscalelp.read_no_common_ref_datasets(xscale_lp)
                print >>self.out, "DEBUG:: %d files are of no use." % (len(bad_idxes))

                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))

                # XXX Actually, not all datasets need to be thrown.. some of them are useful..
                for i in bad_idxes:
                    self.removed_files.append(xds_ascii_files[i])
                    self.removed_reason[xds_ascii_files[i]] = "no_common_refls"

                self.run_cycle(map(lambda i: xds_ascii_files[i], 
                                   filter(lambda j: j not in bad_idxes, xrange(len(xds_ascii_files)))))

            return
        elif "!!! ERROR !!! USELESS DATA ON INPUT REFLECTION FILE" in xscale_log:
            print >>self.out, "DEBUG:: Need to discard useless data."
            unuseful_data = [xscalelp.get_read_data(xscale_lp)[-1]] #filter(lambda x: x[2]==0, xscalelp.get_read_data(xscale_lp))
            if len(unuseful_data) == 0:
                print >>self.out, "I don't know how to fix it.."
                return
            remove_idxes = map(lambda x: x[0]-1, unuseful_data)
            remove_idxes = self.check_remove_list(remove_idxes)
            keep_idxes = filter(lambda x: x not in remove_idxes, xrange(len(xds_ascii_files)))
            for i in remove_idxes:
                self.removed_files.append(xds_ascii_files[i])
                self.removed_reason[xds_ascii_files[i]] = "useless"

            for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))
            self.run_cycle(map(lambda i: xds_ascii_files[i], keep_idxes))
            return
        elif "INACCURATE SCALING FACTORS." in xscale_log:
            # Actually I don't know how to fix this.. (bug?) but worth proceeding (discarding bad data may solve problem).
            print >>self.out, "'INACCURATE SCALING FACTORS' happened.. but ignored."
        elif "!!! ERROR !!!" in xscale_log:
            print >>self.out, "Unknown error! please check the XSCALE.LP and fix the program."
            return

        # Re-scale by changing reference
        rescale_for = None
        if len(self.reject_method) == 0:
            rescale_for = self.reference_choice # may be None
        elif reference_idx is None:
            rescale_for = "bmed"
        
        if rescale_for is not None and len(xds_ascii_files) > 1:
            ref_num = xscale.decide_scaling_reference_based_on_bfactor(xscale_lp, rescale_for, return_as="index")
            if reference_idx != ref_num:
                print >>self.out, "Rescaling with %s" % rescale_for
                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))
                self.run_cycle(xds_ascii_files, reference_idx=ref_num)

        if len(self.reject_method) == 0:
            return

        # Remove bad data
        remove_idxes = []
        remove_reasons = {}

        if self.reject_method[0] == "framecc":
            print >>self.out, "Rejections based on frame CC"
            from yamtbx.dataproc.xds.command_line import xscale_cc_against_merged

            # list of [frame, n_all, n_common, cc] in the same order
            framecc = xscale_cc_against_merged.run(hklin=os.path.join(self.workdir, "xscale.hkl"),
                                                   output_dir=self.workdir,
                                                   nproc=self.nproc).values()
            if self.reject_params.framecc.method == "tukey":
                ccs = numpy.array(map(lambda x: x[3], reduce(lambda x,y:x+y,framecc)))
                q25, q75 = numpy.percentile(ccs, [25, 75])
                cc_cutoff  = q25 - self.reject_params.framecc.iqr_coeff * (q75 - q25)
                print >>self.out, " frameCC cutoff = %.4f (%.2f*IQR)" % (cc_cutoff, self.reject_params.framecc.iqr_coeff)
            else:
                cc_cutoff = self.reject_params.framecc.abs_cutoff
                print >>self.out, " frameCC cutoff = %.4f (value specified)" % cc_cutoff

            for i, cclist in enumerate(framecc):
                useframes = map(lambda x: x[0], filter(lambda x: x[3] > cc_cutoff, cclist))
                if len(useframes) == 0:
                    remove_idxes.append(i)
                    remove_reasons.setdefault(i, []).append("allbadframe")
                    continue

                f = xds_ascii_files[i]
                xac = XDS_ASCII(f)
                if set(useframes).issuperset(set(range(min(xac.iframe), max(xac.iframe)))):
                    continue # All useful frames.

                sel = xac.iframe == useframes[0]
                for x in useframes[1:]: sel |= xac.iframe == x
                if sum(sel) < 10: # XXX care I/sigma
                    remove_idxes.append(i)
                    remove_reasons.setdefault(i, []).append("allbadframe")
                    continue

                print >>self.out, "Extracting frames %s out of %d-%d in %s" % (",".join(map(str,useframes)),
                                                                               min(xac.iframe), max(xac.iframe),
                                                                               f)

                newf = self.request_file_modify(f)
                xac.write_selected(sel, newf)

            self.reject_method.pop(0) # Perform only once

        elif self.reject_method[0] == "lpstats":
            if "bfactor" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on B-factor outliers (%.2f*IQR)" % iqrc
                Bs = numpy.array(map(lambda x:x[1], xscalelp.get_k_b(xscale_lp)))
                q25, q75 = numpy.percentile(Bs, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, b in enumerate(Bs):
                    if b < lowlim or b > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_B")
                        count += 1

                print >>self.out, " %4d B-factor outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "em.b" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on error model b outliers (%.2f*IQR)" % iqrc
                bs = numpy.array(map(lambda x:x[1], xscalelp.get_ISa(xscale_lp)))
                q25, q75 = numpy.percentile(bs, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, b in enumerate(bs):
                    if b < lowlim or b > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_em.b")
                        count += 1

                print >>self.out, " %4d error model b outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "em.ab" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on error model a*b outliers (%.2f*IQR)" % iqrc
                vals = numpy.array(map(lambda x:x[0]*x[1], xscalelp.get_ISa(xscale_lp)))
                q25, q75 = numpy.percentile(vals, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, ab in enumerate(vals):
                    if ab < lowlim or ab > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_em.ab")
                        count += 1

                print >>self.out, " %4d error model a*b outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "rfactor" in self.reject_params.lpstats.stats:
                iqrc = self.reject_params.lpstats.iqr_coeff
                print >>self.out, "Rejections based on R-factor outliers (%.2f*IQR)" % iqrc
                rstats = xscalelp.get_rfactors_for_each(xscale_lp)
                vals = numpy.array(map(lambda x:rstats[x][-1][1], rstats)) # Read total R-factor
                q25, q75 = numpy.percentile(vals, [25, 75])
                iqr = q75 - q25
                lowlim, highlim = q25 - iqrc*iqr, q75 + iqrc*iqr
                count = 0
                for i, v in enumerate(vals):
                    if v < lowlim or v > highlim:
                        remove_idxes.append(i)
                        remove_reasons.setdefault(i, []).append("bad_R")
                        count += 1

                print >>self.out, " %4d R-factor outliers (<%.2f, >%.2f) removed"% (count, lowlim, highlim)

            if "pairwise_cc" in self.reject_params.lpstats.stats:
                corrs = xscalelp.get_pairwise_correlations(xscale_lp)
                if self.reject_params.lpstats.pwcc.method == "tukey":
                    q25, q75 = numpy.percentile(map(lambda x: x[3], corrs), [25, 75])
                    iqr = q75 - q25
                    lowlim = q25 - self.reject_params.lpstats.pwcc.iqr_coeff * iqr
                    print >>self.out, "Rejections based on pairwise_cc < %.4f (IQR=%.2f)" % (lowlim, iqr)
                else:
                    lowlim = self.reject_params.lpstats.pwcc.abs_cutoff
                    print >>self.out, "Rejections based on pairwise_cc < %.4f" % lowlim

                bad_corrs = filter(lambda x: x[3] < lowlim, corrs)
                idx_bad = {}
                for i, j, common_refs, corr, ratio, bfac in bad_corrs:
                    idx_bad[i] = idx_bad.get(i, 0) + 1
                    idx_bad[j] = idx_bad.get(j, 0) + 1

                idx_bad = idx_bad.items()
                idx_bad.sort(key=lambda x:x[1])
                count = 0
                for idx, badcount in reversed(idx_bad):
                    remove_idxes.append(idx-1)
                    remove_reasons.setdefault(idx-1, []).append("bad_pwcc")
                    bad_corrs = filter(lambda x: idx not in x[:2], bad_corrs)
                    if len(bad_corrs) == 0: break
                    fun_key = lambda x: x[3]
                    print >>self.out, " Removing idx=%d (CC %.3f..%.3f) remaining %d bad pairs" % (idx, 
                                                                                                   min(bad_corrs,key=fun_key)[3],
                                                                                                   max(bad_corrs,key=fun_key)[3],
                                                                                                   len(bad_corrs))
                    count += 1
                print >>self.out, " %4d pairwise CC outliers removed" % count

            self.reject_method.pop(0) # Perform only once
        elif self.reject_method[0] == "delta_cc1/2":
            print >>self.out, "Rejection based on delta_CC1/2 in %s shell" % self.delta_cchalf_bin
            table = xscalelp.read_stats_table(xscale_lp)
            i_stat = -1 if self.delta_cchalf_bin == "total" else -2
            prev_cchalf = table["cc_half"][i_stat]
            prev_nuniq = table["nuniq"][i_stat]
            # file_name->idx table
            remaining_files = collections.OrderedDict(map(lambda x: x[::-1], enumerate(xds_ascii_files)))

            # For consistent resolution limit
            inp_head = self.xscale_inp_head + "SPACE_GROUP_NUMBER= %s\nUNIT_CELL_CONSTANTS= %s\n\n" % (sg, cell)
            count = 0
            for i in xrange(len(xds_ascii_files)-1): # if only one file, cannot proceed.
                tmpdir = os.path.join(self.workdir, "reject_test_%.3d" % i)

                cchalf_list = xscale.calc_cchalf_by_removing(wdir=tmpdir, inp_head=inp_head,
                                                             inpfiles=remaining_files.keys(),
                                                             stat_bin=self.delta_cchalf_bin,
                                                             nproc=self.nproc,
                                                             nproc_each=self.nproc_each,
                                                             batchjobs=self.batchjobs)

                rem_idx, cc_i, nuniq_i = cchalf_list[0] # First (largest) is worst one to remove.
                rem_idx_in_org = remaining_files[remaining_files.keys()[rem_idx]]
                
                # Decision making by CC1/2
                print >>self.out, "DEBUG:: cycle %.3d remove %3d if %.2f*%d > %.2f*%d" % (i, rem_idx_in_org, 
                                                                                          cc_i, nuniq_i,
                                                                                          prev_cchalf, prev_nuniq)
                if cc_i*nuniq_i <= prev_cchalf*prev_nuniq: break
                print >>self.out, "Removing idx= %3d gained CC1/2 by %.2f" % (rem_idx_in_org, cc_i-prev_cchalf)

                prev_cchalf, prev_nuniq = cc_i, nuniq_i
                remove_idxes.append(rem_idx_in_org)
                remove_reasons.setdefault(rem_idx_in_org, []).append("bad_cchalf")
                del remaining_files[remaining_files.keys()[rem_idx]] # remove file from table
                count += 1

            print >>self.out, " %4d removed by DeltaCC1/2 method" % count

            if self.next_delta_cchalf_bin != []:
                self.delta_cchalf_bin = self.next_delta_cchalf_bin.pop(0)
            else:
                self.reject_method.pop(0)
        else:
            print >>self.out, "ERROR:: Unsupported reject_method (%s)" % reject_method

        # Remove duplicates
        remove_idxes = list(set(remove_idxes))
        remove_idxes = self.check_remove_list(remove_idxes)
        if len(remove_idxes) > 0:
            print >>self.out, "DEBUG:: Need to remove %d files" % len(remove_idxes)
            for i in sorted(remove_idxes): 
                print >>self.out, " %.3d %s" % (i, xds_ascii_files[i])
                self.removed_files.append(xds_ascii_files[i])
                self.removed_reason[xds_ascii_files[i]] = ",".join(remove_reasons[i])

        # Next run
        keep_idxes = filter(lambda x: x not in remove_idxes, xrange(len(xds_ascii_files)))
        if len(self.reject_method) > 0 or len(remove_idxes) > 0:
            self.workdir = self.request_next_workdir()
            self.run_cycle(map(lambda i: xds_ascii_files[i], keep_idxes))
        elif self.reference_choice is not None and len(keep_idxes) > 1:
            # Just re-scale with B reference
            ref_num = xscale.decide_scaling_reference_based_on_bfactor(xscale_lp, self.reference_choice, return_as="index")
            if reference_idx != ref_num:
                print >>self.out, "Rescaling2 with %s" % self.reference_choice
                for f in "XSCALE.INP", "XSCALE.LP": util.rotate_file(os.path.join(self.workdir, f))
                self.run_cycle(map(lambda i: xds_ascii_files[i], keep_idxes), reference_idx=ref_num)
コード例 #12
0
ファイル: run_all_xds_simple.py プロジェクト: harumome/kamo
def xds_sequence(root, params):
    print
    print os.path.relpath(root, params.topdir)

    xparm = os.path.join(root, "XPARM.XDS")
    gxparm = os.path.join(root, "GXPARM.XDS")
    defpix_lp = os.path.join(root, "DEFPIX.LP")
    correct_lp = os.path.join(root, "CORRECT.LP")
    integrate_hkl = os.path.join(root, "INTEGRATE.HKL")
    xac_hkl = os.path.join(root, "XDS_ASCII.HKL")
    integrate_lp = os.path.join(root, "INTEGRATE.LP")
    xdsinp = os.path.join(root, "XDS.INP")

    assert os.path.isfile(xdsinp)

    decilog = multi_out()
    decilog.register("log", open(os.path.join(root, "decision.log"), "a"), atexit_send_to=None)

    print >>decilog, "xds_sequence started at %s in %s\n" % (time.strftime("%Y-%m-%d %H:%M:%S"), root)
    
    if params.show_progress:
        decilog.register("stdout", sys.stdout)

    if params.mode=="initial" and params.resume and os.path.isfile(correct_lp):
        print " Already processed."
        return

    if params.mode == "recycle" and not os.path.isfile(gxparm):
        print "GXPARM.XDS not found. Cannot do recycle."
        return

    if params.fast_delphi and (params.nproc is None or params.nproc > 1):
        delphi = optimal_delphi_by_nproc(xdsinp=xdsinp, nproc=params.nproc)
        print " Setting delphi to ", delphi
        modify_xdsinp(xdsinp, inp_params=[("DELPHI", str(delphi)),
                                          ])

    if params.nproc is not None and params.nproc > 1:
        modify_xdsinp(xdsinp, inp_params=[("MAXIMUM_NUMBER_OF_PROCESSORS", str(params.nproc)),
                                          ])

    if params.mode == "initial":
        # To Indexing
        modify_xdsinp(xdsinp, inp_params=[("JOB", "XYCORR INIT COLSPOT IDXREF")])
        run_xds(wdir=root, show_progress=params.show_progress)
        print # indexing stats like indexed percentage here.

        if params.tryhard:
            try_indexing_hard(root, params.show_progress, decilog,
                              known_sgnum=params.cell_prior.sgnum,
                              known_cell=params.cell_prior.cell,
                              tol_length=params.cell_prior.tol_length,
                              tol_angle=params.cell_prior.tol_angle)

        if not os.path.isfile(xparm):
            print >>decilog, " Indexing failed."
            return

        if params.cell_prior.check and params.cell_prior.sgnum > 0:
            xsxds = XPARM(xparm).crystal_symmetry()
            xsref = crystal.symmetry(params.cell_prior.cell, params.cell_prior.sgnum)
            cosets = reindex.reindexing_operators(xsref, xsxds,
                                                  params.cell_prior.tol_length, params.cell_prior.tol_angle)
            if cosets.double_cosets is None:
                print >>decilog, " Incompatible cell. Indexing failed."
                return

    elif params.mode == "recycle":
        print " Start recycle. original ISa= %.2f" % correctlp.get_ISa(correct_lp, check_valid=True)
        for f in xds_files.generated_after_DEFPIX + ("XPARM.XDS", "plot_integrate.log"):
            util.rotate_file(os.path.join(root, f), copy=True)
        shutil.copyfile(gxparm+".1", xparm)
    else:
        raise "Unknown mode (%s)" % params.mode

    # To Integration
    modify_xdsinp(xdsinp, inp_params=[("JOB", "DEFPIX INTEGRATE"),
                                      ("INCLUDE_RESOLUTION_RANGE", "50 0")])
    run_xds(wdir=root, show_progress=params.show_progress)
    if os.path.isfile(integrate_lp):
        xds_plot_integrate.run(integrate_lp, os.path.join(root, "plot_integrate.log"))
    if not os.path.isfile(integrate_hkl):
        print >>decilog, " Integration failed."
        return


    # Make _noscale.HKL if needed
    if params.no_scaling:
        bk_prefix = make_backup(("XDS.INP",), wdir=root, quiet=True)
        xparm_obj = XPARM(xparm)
        modify_xdsinp(xdsinp, inp_params=[("JOB", "CORRECT"),
                                          ("CORRECTIONS", ""),
                                          ("NBATCH", "1"),
                                          ("MINIMUM_I/SIGMA", "50"),
                                          ("REFINE(CORRECT)", ""),
                                          ("UNIT_CELL_CONSTANTS", " ".join(map(lambda x:"%.3f"%x, xparm_obj.unit_cell))),
                                          ("SPACE_GROUP_NUMBER", "%d"%xparm_obj.spacegroup),])
        print >>decilog, " running CORRECT without empirical scaling"
        run_xds(wdir=root, show_progress=params.show_progress)
        for f in xds_files.generated_by_CORRECT + ("XDS.INP",):
            ff = os.path.join(root, f)
            if not os.path.isfile(ff): continue
            if ff.endswith(".cbf"):
                os.remove(ff)
            else:
                os.rename(ff, ff+"_noscale")

        revert_files(("XDS.INP",), bk_prefix, wdir=root, quiet=True)

    # Run pointless
    symm_by_integrate = None
    if params.use_pointless:
        worker = Pointless()
        result = worker.run_for_symm(xdsin=integrate_hkl, 
                                     logout=os.path.join(root, "pointless_integrate.log"))
        if "symm" in result:
            symm = result["symm"]
            print >>decilog, " pointless using INTEGRATE.HKL suggested", symm.space_group_info()
            sgnum = symm.space_group_info().type().number()
            cell = " ".join(map(lambda x:"%.2f"%x, symm.unit_cell().parameters()))
            modify_xdsinp(xdsinp, inp_params=[("SPACE_GROUP_NUMBER", "%d"%sgnum),
                                              ("UNIT_CELL_CONSTANTS", cell)])
            symm_by_integrate = symm
        else:
            print >>decilog, " pointless failed."

    # Do Scaling
    modify_xdsinp(xdsinp, inp_params=[("JOB", "CORRECT"),])

    run_xds(wdir=root, show_progress=params.show_progress)

    if not os.path.isfile(gxparm):
        print >>decilog, " Scaling failed."
        return

    print >>decilog, " OK. ISa= %.2f" % correctlp.get_ISa(correct_lp, check_valid=True)

    ret = calc_merging_stats(os.path.join(root, "XDS_ASCII.HKL"))
    if params.cut_resolution:
        if ret is not None and ret[0] is not None:
            d_min = ret[0]
            modify_xdsinp(xdsinp, inp_params=[("JOB", "CORRECT"),
                                              ("INCLUDE_RESOLUTION_RANGE", "50 %.2f"%d_min)])
            print >>decilog, " Re-scale at %.2f A" % d_min
            os.rename(os.path.join(root, "CORRECT.LP"), os.path.join(root, "CORRECT_fullres.LP"))
            os.rename(os.path.join(root, "XDS_ASCII.HKL"), os.path.join(root, "XDS_ASCII_fullres.HKL"))
            run_xds(wdir=root, show_progress=params.show_progress)
            print >>decilog, " OK. ISa= %.2f" % correctlp.get_ISa(correct_lp, check_valid=True)
            print >>decilog, " (Original files are saved as *_fullres.*)"
        else:
            print >>decilog, "error: Can't decide resolution."

    last_ISa = correctlp.get_ISa(correct_lp, check_valid=True)

    # Run pointless and (if result is different from INTEGRATE) re-scale.
    if params.use_pointless:
        worker = Pointless()
        result = worker.run_for_symm(xdsin=xac_hkl,
                                     logout=os.path.join(root, "pointless_correct.log"))
        if "symm" in result:
            symm = result["symm"]
            need_rescale = False

            if symm_by_integrate is not None:
                if not xtal.is_same_laue_symmetry(symm_by_integrate.space_group(), symm.space_group()):
                    print >>decilog, "pointless suggested %s, which is different Laue symmetry from INTEGRATE.HKL (%s)" % (symm.space_group_info(), symm_by_integrate.space_group_info())
                    need_rescale = True
            else:
                print >>decilog, "pointless using XDS_ASCII.HKL suggested %s" % symm.space_group_info()
                need_rescale = True

            if need_rescale:
                # make backup, and do correct and compare ISa
                # if ISa got worse, revert the result.
                backup_needed = ("XDS.INP", "XDS_ASCII_fullres.HKL","CORRECT_fullres.LP",
                                 "merging_stats.pkl","merging_stats.log")
                backup_needed += xds_files.generated_by_CORRECT
                bk_prefix = make_backup(backup_needed, wdir=root, quiet=True)

                sgnum = symm.space_group_info().type().number()
                cell = " ".join(map(lambda x:"%.2f"%x, symm.unit_cell().parameters()))
                modify_xdsinp(xdsinp, inp_params=[("JOB", "CORRECT"),
                                                  ("SPACE_GROUP_NUMBER", "%d"%sgnum),
                                                  ("UNIT_CELL_CONSTANTS", cell),
                                                  ("INCLUDE_RESOLUTION_RANGE", "50 0")])

                run_xds(wdir=root, show_progress=params.show_progress)

                ret = calc_merging_stats(os.path.join(root, "XDS_ASCII.HKL"))
                
                if params.cut_resolution:
                    if ret is not None and ret[0] is not None:
                        d_min = ret[0]
                        modify_xdsinp(xdsinp, inp_params=[("JOB", "CORRECT"),
                                                          ("INCLUDE_RESOLUTION_RANGE", "50 %.2f"%d_min)])
                        print >>decilog, " Re-scale at %.2f A" % d_min
                        os.rename(os.path.join(root, "CORRECT.LP"), os.path.join(root, "CORRECT_fullres.LP"))
                        os.rename(os.path.join(root, "XDS_ASCII.HKL"), os.path.join(root, "XDS_ASCII_fullres.HKL"))
                        run_xds(wdir=root, show_progress=params.show_progress)
                        print >>decilog, " OK. ISa= %.2f" % correctlp.get_ISa(correct_lp, check_valid=True)
                        print >>decilog, " (Original files are saved as *_fullres.*)"
                    else:
                        print >>decilog, "error: Can't decide resolution."
                        for f in ("CORRECT_fullres.LP", "XDS_ASCII_fullres.HKL"):
                            if os.path.isfile(os.path.join(root, f)):
                                print >>decilog, "removing", f
                                os.remove(os.path.join(root, f))

                ISa = correctlp.get_ISa(correct_lp, check_valid=True)

                if ISa >= last_ISa or last_ISa!=last_ISa: # if improved or last_ISa is nan
                    print >>decilog, "ISa improved= %.2f" % ISa
                    remove_backups(backup_needed, bk_prefix, wdir=root)
                else:
                    print >>decilog, "ISa got worse= %.2f" % ISa
                    for f in backup_needed:
                        if os.path.isfile(os.path.join(root, f)): os.remove(os.path.join(root, f))

                    revert_files(backup_needed, bk_prefix, wdir=root, quiet=True)

    run_xdsstat(wdir=root)
    print
    if params.make_report: html_report.make_individual_report(root, root)
    print >>decilog, "xds_sequence finished at %s\n" % time.strftime("%Y-%m-%d %H:%M:%S")
    decilog.close()
コード例 #13
0
def prepare_plot(plot_data, f, kind, wdir, rotate=False, plot_grid=True):
    def normalize_max(v, maximum=400.):
        max_v = max(v)
        f = maximum / max_v if max_v > 0 else 1.
        return map(
            lambda x: f * x + 1.,
            v)  # add 1 to make zero-value pickable # XXX when max_v is Inf?

    # normalize_max()

    scan_prefix = f[:f.index(" ")] if " (phi=" in f else f
    pngout = os.path.join(wdir, "plot_%s%s.png" % (scan_prefix, kind))
    if rotate:
        rotate_file(pngout)

    xs, ys, ds, imgfs = [], [], [], []
    zero_xs, zero_ys = [], []  # For values of zero
    for imgf, stat in plot_data[f]:
        gc = stat.grid_coord
        if gc is None:
            continue
        x, y = gc
        x *= 1000.
        y *= 1000.
        d = stat.stats[("n_spots", "total_integrated_signal",
                        "median_integrated_signal").index(kind)]
        xs.append(x)
        ys.append(y)
        ds.append(d)
        imgfs.append(imgf)

        if d == 0:
            zero_xs.append(x)
            zero_ys.append(y)

    if len(xs) == 0:
        return "", ""

    win = (max(xs) - min(xs) + 1000) / 1000 * 400 / 80 * 1.7  # ad-hoc scale
    hin = (max(ys) - min(ys) + 1000) / 1000 * 400 / 80

    fig = matplotlib.figure.Figure(figsize=(win, hin),
                                   dpi=80)  # figsize in inches
    ax = fig.add_subplot(111)
    #p = ax.scatter(xs, ys, s=normalize_max(ds), c=ds, alpha=0.5) # s in points^2

    scaninfo = plot_data[f][0][1].scan_info

    if plot_grid:
        p = plot_heatmap(ax, xs, ys, ds, scaninfo)
    else:
        p, _ = plot_circles(ax, xs, ys, ds, zero_xs, zero_ys)

    if max(ds) - min(ds) > 1e-5:
        fig.colorbar(p)
    ax.scatter(zero_xs,
               zero_ys,
               s=50,
               marker="x",
               c=[0] * len(zero_xs),
               alpha=0.5)
    ax.set_xlabel("horizontal [um]")
    ax.set_ylabel("vertical [um]")

    if scaninfo is not None:
        vp, hp = scaninfo.vpoints, scaninfo.hpoints
        vs, hs = scaninfo.vstep * 1000., scaninfo.hstep * 1000.

        if 1 in (vp, hp) or len(plot_data[f]) <= hp:
            ax.set_aspect("auto")
        else:
            ax.set_aspect("equal")

        if vp == hp == 1:
            ax.set_xlim(-10, 10)
            ax.set_ylim(-10, 10)
        elif vp == 1:
            ax.set_xlim(min(xs) - hs, max(xs) + hs)
            ax.set_ylim(-10, 10)
        elif hp == 1:
            ax.set_xlim(-10, 10)
            ax.set_ylim(min(ys) - vs, max(ys) + vs)
        else:
            ax.set_xlim(min(xs) - hs, max(xs) + hs)
            ax.set_ylim(min(ys) - vs, max(ys) + vs)
    else:
        # Should never reach here.. but should we set limit here?
        vs, hs = 5, 5

    canvas = matplotlib.backends.backend_agg.FigureCanvasAgg(fig)
    canvas.print_figure(pngout + ".tmp", dpi=80, format="png")
    img_width = fig.get_figwidth() * 80
    img_height = fig.get_figheight() * 80

    map_str = '<map name="%smap">\n' % scan_prefix
    for x, y, imgf in zip(xs, ys, imgfs):
        if plot_grid:
            tx1, ty1 = ax.transData.transform((x - hs / 2., y - vs / 2.))
            tx2, ty2 = ax.transData.transform((x + hs / 2., y + vs / 2.))
            map_str += '  <area shape="rect" coords="%.2f,%.2f,%.2f,%.2f" title="%s" onClick=\'plotClick("%s", "%s")\'>\n' % (
                tx1, img_height - ty1, tx2, img_height - ty2,
                os.path.basename(imgf), scan_prefix, os.path.basename(imgf))
        else:
            tx, ty = ax.transData.transform((x, y))
            map_str += '  <area shape="circle" coords="%.2f,%.2f,10" title="%s" onClick=\'plotClick("%s", "%s")\'>\n' % (
                tx, img_height - ty, os.path.basename(imgf), scan_prefix,
                os.path.basename(imgf))

    map_str += "</map>"
    return pngout, map_str
コード例 #14
0
def make_html_report(current_stats,
                     wdir,
                     htmlout,
                     zoo_mode,
                     rotate=False,
                     plot_grid=True):
    #plot_data = self.plotFrame.data
    shikalog.info("Making HTML report for %s" % wdir)
    startt = time.time()

    plot_data = collections.OrderedDict()
    for f, stat in current_stats.items():
        if stat is None: continue
        fpref = decide_fpref(f, stat.scan_info)
        plot_data.setdefault(fpref, []).append((f, stat))

    #if gui_params.mode == "zoo": htmlout = os.path.join(wdir, "report_zoo.html")
    #else: htmlout = os.path.join(wdir, "report.html")

    if rotate: rotate_file(htmlout)

    if zoo_mode: assert len(plot_data) <= 1

    kinds = ("total_integrated_signal", "median_integrated_signal", "n_spots")
    plots = ""
    pngs = []
    for f in plot_data:
        scan_prefix = f[:f.index(" ")] if " (phi=" in f else f
        info = plot_data[f][0][1].scan_info

        if info is None: info = bl_logfiles.ScanInfo()  # Empty info
        plots += '<table border=0 style="margin-bottom:0px">\n  <tr><td>\n'

        if zoo_mode:
            try:
                im = Image.open(os.path.join(wdir, "../../../before.ppm"))
                im.save(os.path.join(wdir, "loop_before.jpg"))
            except:
                import traceback
                print "Can't convert loop image"
                print traceback.format_exc()
            plots += '  Loop image</td><td><img src="loop_before.jpg" /></td></tr>\n'
            plots += '  <tr><td>\n'

        plots += '  <table class="info"><tr><th>scan</th><td>%s</td></tr>\n' % scan_prefix
        plots += '    <tr><th>date</th><td>%s</td></tr>\n' % (
            info.date.strftime("%Y/%m/%d %H:%M:%S")
            if info.date != 0 else "??")

        if info.is_shutterless():
            plots += '    <tr><th>fixed spindle</th><td>%.2f&deg;</td></tr>\n' % info.fixed_spindle
            plots += '    <tr><th>frame rate</th><td>%.2f [Hz]</td></tr>\n' % info.frame_rate
        else:
            plots += '    <tr><th>osc. start</th><td>%.2f&deg;</td></tr>\n' % info.osc_start
            plots += '    <tr><th>osc. step</th><td>%.2f&deg;</td></tr>\n' % info.osc_step
            plots += '    <tr><th>exp. time</th><td>%.2f [sec]</td></tr>\n' % info.exp_time

        plots += '    <tr><th>beam size</th><td>h= %.1f, v= %.1f [&mu;m]</td></tr>\n' % (
            info.beam_hsize, info.beam_vsize)
        plots += '    <tr><th>attenuator</th><td>%s %.1f [&mu;m]</td></tr>\n' % info.attenuator
        plots += '    <tr><th>distance</th><td>%.2f [mm]</td></tr>\n' % info.distance
        plots += '    <tr><th>wavelength</th><td>%.4f [&#x212b;]</td></tr>\n' % info.wavelength
        plots += '    <tr><th>scan points</th><td>v=%d, h=%d</td></tr>\n' % (
            info.vpoints, info.hpoints)
        plots += '    <tr><th>scan steps</th><td>v=%.2f, h=%.2f [&mu;m]</td></tr>\n' % (
            info.vstep * 1000., info.hstep * 1000.)
        plots += '  </table>\n'

        for i, kind in enumerate(kinds):
            pngout, mapstr = prepare_plot(plot_data, f, kind, wdir, rotate,
                                          plot_grid)
            pngs.append(pngout)  # rename later
            adds = ""
            if i == 0:
                plots += '  <td><img name="%s" src="%s" usemap="#%smap" /><br />\n' % (
                    scan_prefix, os.path.basename(pngout), scan_prefix)
                plots += '<form>\n'
                adds = ' checked="checked"'
            plots += '<input type="radio" name="spot_mode" value="%s" onClick="changeplot(this, \'%s\')"%s />%s<br />\n' % (
                kind, scan_prefix, adds, kind)
        plots += '</form>%s</td></tr></table><br>\n\n' % mapstr  # The last mapstr is used. This is dirty way, though.
        plots += '<table border=0 style="margin-bottom:20px">\n  <tr><td>\n'
        plots += '<td style="border:solid 1px #999"><canvas id="%scanvas" width=600 height=600></canvas>\n' % scan_prefix
        plots += '<td id="%sinfo" valign="top"></tr></table>\n\n' % scan_prefix

    result = current_stats.items()
    if len(result) == 0:
        shikalog.warning("No results found. Exiting. %s" % wdir)
        return

    dbfile = os.path.join(wdir, "shika.db")
    con = sqlite3.connect(dbfile, timeout=10, isolation_level=None)
    con.execute('pragma query_only = ON;')
    print "Reading data from DB for making report html."
    c = con.execute("select filename,spots from spots")
    dbspots = dict(
        map(lambda x: (str(x[0]), pickle.loads(str(x[1]))), c.fetchall()))
    spot_data = "var spot_data = {"
    for i, (f, stat) in enumerate(result):
        if stat is None: continue
        bf = os.path.basename(f)
        spots = dbspots[bf]["spots"]
        thumb_posmag = dbspots[bf]["thumb_posmag"]
        r = re.search("^(.*)_([0-9]+)\.[^0-9]+$", bf)
        prefix, num = r.group(1), int(r.group(2))
        spot_data += '"%s":[[' % bf
        for y, x, snr, d in spots:
            #x, y = spot.max_pxl_y(), spot.max_pxl_x()
            pos = thumb_posmag[0:2]
            mag = thumb_posmag[2]
            x, y = (x - pos[0]) * mag, (y - pos[1]) * mag
            spot_data += "[%d,%d]," % (x, y)

        spot_data += "], %.1f, %.1f, %d, %d]," % (stat.stats[1], stat.stats[2],
                                                  stat.stats[0], num)

    spot_data += "};"
    spot_data = spot_data.replace("inf,", "Infinity,").replace("nan,", "NaN,")

    con.close()

    # Determine img picture extension
    img_ext = ".png" if os.path.exists(
        os.path.join(wdir,
                     os.path.basename(result[0][0]) + ".png")) else ".jpg"
    jpg_dirs = "var jpg_dirs = {"
    flag_tiled_jpg = False
    if glob.glob(os.path.join(wdir, "thumb_*")):
        for res in result:
            r = re.search("^(.*)_([0-9]+)\.[^0-9]+$", os.path.basename(res[0]))
            prefix, num = r.group(1), int(r.group(2))
            jd = os.path.join("thumb_%s_%.3d" % (prefix, num // 1000))
            if not os.path.exists(jd):
                flag_tiled_jpg = True  # THIS MAY CAUSE A PROBLEM..
            jpg_dirs += '"%s":"%s",' % (os.path.basename(res[0]), jd)
    else:
        for res in result:
            jpg_dirs += '"%s":".",' % os.path.basename(res[0])

    jpg_dirs += "};"

    ofs = open(htmlout, "w")
    ofs.write("""\
<!DOCTYPE html>
<html>
<head>
  <meta charset="UTF-8" />
  <title>SHIKA report</title>
  <script type="text/javascript">
  <!--
    function changeplot(obj, name){
     document.images[name].src = "plot_"+name+obj.value+".png";
    }
    %(spot_data)s
    %(jpg_dirs)s
""" % dict(spot_data=spot_data,
           jpg_dirs=jpg_dirs if not flag_tiled_jpg else ""))

    if flag_tiled_jpg:  # FOR TILED JPEG
        ofs.write("""\
    function plotClick(scanprefix, imgfile) {
        var f = imgfile;
        var data = spot_data[f];
        var img = new Image();
        var idx = Math.floor((data[4]-1)/100);
        var n1 = idx*100+1;
        var n2 = (idx+1)*100;
        img.src = "thumb_" + scanprefix.slice(0,-1) + "/" + scanprefix + ("00000"+n1).slice(-6) + "-" + ("00000"+n2).slice(-6) + ".jpg"; // prefix ends with _

        var idx2 = (data[4]-1)%%100;
        var sx = idx2%%10;
        var sy = Math.floor(idx2/10);

        img.onload = (function(fn){
          return function(){
            var td = document.getElementById(scanprefix+"info");
            td.innerHTML = "<table border=0><tr><td>File name: <td>" + imgfile + "<tr><td>total signal: <td>" + data[1] + "<tr><td>median signal: <td>" + data[2] + "<tr><td>N_spots: <td>" + data[3] + "</table>";

            var t = data[0];
            var canvas = document.getElementById(scanprefix+"canvas");
            var ctx = canvas.getContext('2d');
            ctx.clearRect(0,0,canvas.width,canvas.height);
            ctx.drawImage(this, sx*600, sy*600, 600, 600, 0, 0, 600, 600);
""" % dict(img_ext=img_ext))

    else:  # FOR SINGLE JPEGs
        ofs.write("""\
    function plotClick(scanprefix, imgfile) {
        var f = imgfile;
        var data = spot_data[f];
        var img = new Image();
        img.src = jpg_dirs[f] + "/" + f + "%(img_ext)s";
        img.onload = (function(fn){
          return function(){
            var td = document.getElementById(scanprefix+"info");
            td.innerHTML = "<table border=0><tr><td>File name: <td>" + imgfile + "<tr><td>total signal: <td>" + data[1] + "<tr><td>median signal: <td>" + data[2] + "<tr><td>N_spots: <td>" + data[3] + "</table>";

            var t = data[0];
            var canvas = document.getElementById(scanprefix+"canvas");
            var ctx = canvas.getContext('2d');
            ctx.clearRect(0,0,canvas.width,canvas.height);
            ctx.drawImage(this, 0, 0);
""" % dict(img_ext=img_ext))

    # Common parts
    ofs.write("""\
            for (var i = 0; i < t.length; i++) {
              ctx.rect(t[i][0]-6, t[i][1]-6, 12, 12);
            }
            ctx.strokeStyle = "red";
            ctx.lineWidth = 1;
            ctx.stroke();

            var center = [300,300];
            ctx.beginPath();
            ctx.strokeStyle = "blue";
            ctx.moveTo(center[0]-10, center[1]);
            ctx.lineTo(center[0]+10, center[1]);
            ctx.moveTo(center[0], center[1]-10);
            ctx.lineTo(center[0], center[1]+10);
            ctx.stroke();
          }
        }(f));
    }
  //-->
  </script>
  <style type="text/css">
  <!--
    table.info {
      border-collapse: separate;
      border-spacing: 7px;
    }
    table.info th {
      text-align: left;
    }

    table.images {
      border-collapse: collapse;
      border: solid 1px #999;
    }
    table.images caption {
      margin-top: 1em;
      text-align: left;
    }
    table.images th,
    table.images td {
      border: solid 1px #999;
    }
    table.images th {
      background: #E6E6E6;
      text-align: center;
      white-space: nowrap;
    }
  -->
  </style>
</head>

<body>
<h1>SHIKA report</h1>
<div align="right">
Created on %(date)s<br>
Original directory: %(wdir)s
</div>
<hr style="height: 1px;border: none;border-top: 1px #000000 dotted;" />

%(plots)s

</body>
</html>

""" % dict(
        plots=plots,
        date=datetime.datetime.today().strftime("%Y/%m/%d %H:%M:%S"),
        wdir=wdir,
    ))

    shikalog.debug("Renaming png files in %s" % wdir)
    for png in pngs:
        os.rename(png + ".tmp", png)

    delt = time.time() - startt
    shikalog.info("HTML making Done (took %f s). Open? firefox %s" %
                  (delt, htmlout))