def alchemical_factory_check(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilateElectrostatics=True, annihilateSterics=False): """ Compare energies of reference system and fully-interacting alchemically modified system. ARGUMENTS reference_system (simtk.openmm.System) - the reference System object to compare with positions - the positions to assess energetics for receptor_atoms (list of int) - the list of receptor atoms ligand_atoms (list of int) - the list of ligand atoms to alchemically modify """ # Create a factory to produce alchemical intermediates. logger.info("Creating alchemical factory...") initial_time = time.time() factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms) final_time = time.time() elapsed_time = final_time - initial_time logger.info("AbsoluteAlchemicalFactory initialization took %.3f s" % elapsed_time) platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) delta = 0.001 delta = 1.0e-6 compareSystemEnergies(positions, [reference_system, factory.createPerturbedSystem(AlchemicalState(0, 1-delta, 1, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics))], ['reference', 'partially discharged'], platform=platform) compareSystemEnergies(positions, [factory.createPerturbedSystem(AlchemicalState(0, delta, 1, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics)), factory.createPerturbedSystem(AlchemicalState(0, 0.0, 1, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics))], ['partially charged', 'discharged'], platform=platform) compareSystemEnergies(positions, [factory.createPerturbedSystem(AlchemicalState(0, 0, 1, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics)), factory.createPerturbedSystem(AlchemicalState(0, 0, 1-delta, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics))], ['discharged', 'partially decoupled'], platform=platform) compareSystemEnergies(positions, [factory.createPerturbedSystem(AlchemicalState(0, 0, delta, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics)), factory.createPerturbedSystem(AlchemicalState(0, 0, 0, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics))], ['partially coupled', 'decoupled'], platform=platform) return
def overlap_check(): """ BUGS TO REPORT: * Even if epsilon = 0, energy of two overlapping atoms is 'nan'. * Periodicity in 'nan' if dr = 0.1 even in nonperiodic system """ # Create a reference system. logger.info("Creating Lennard-Jones cluster system...") #[reference_system, positions] = testsystems.LennardJonesFluid() #receptor_atoms = [0] #ligand_atoms = [1] system_container = testsystems.LysozymeImplicit() (reference_system, positions) = system_container.system, system_container.positions receptor_atoms = range(0,2603) # T4 lysozyme L99A ligand_atoms = range(2603,2621) # p-xylene unit = positions.unit positions = units.Quantity(np.array(positions / unit), unit) factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms) alchemical_state = AlchemicalState(0.00, 0.00, 0.00, 1.0) # Create the perturbed system. logger.info("Creating alchemically-modified state...") alchemical_system = factory.createPerturbedSystem(alchemical_state) # Compare energies. timestep = 1.0 * units.femtosecond logger.info("Computing reference energies...") integrator = openmm.VerletIntegrator(timestep) context = openmm.Context(reference_system, integrator) context.setPositions(positions) state = context.getState(getEnergy=True) reference_potential = state.getPotentialEnergy() del state, context, integrator logger.info(reference_potential) logger.info("Computing alchemical energies...") integrator = openmm.VerletIntegrator(timestep) context = openmm.Context(alchemical_system, integrator) dr = 0.1 * units.angstroms # TODO: Why does 0.1 cause periodic 'nan's? a = receptor_atoms[-1] b = ligand_atoms[-1] delta = positions[a,:] - positions[b,:] for k in range(3): positions[ligand_atoms,k] += delta[k] for i in range(30): r = dr * i positions[ligand_atoms,0] += dr context.setPositions(positions) state = context.getState(getEnergy=True) alchemical_potential = state.getPotentialEnergy() logger.info("%8.3f A : %f " % (r / units.angstroms, alchemical_potential / units.kilocalories_per_mole)) del state, context, integrator return
def alchemical_factory_check(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilate_electrostatics=True, annihilate_sterics=False, precision=None): """ Compare energies of reference system and fully-interacting alchemically modified system. ARGUMENTS reference_system (simtk.openmm.System) - the reference System object to compare with positions - the positions to assess energetics for receptor_atoms (list of int) - the list of receptor atoms ligand_atoms (list of int) - the list of ligand atoms to alchemically modify precision : str, optional, default=None Precision model, or default if not specified. ('single', 'double', 'mixed') """ # Create a factory to produce alchemical intermediates. logger.info("Creating alchemical factory...") initial_time = time.time() factory = AbsoluteAlchemicalFactory( reference_system, ligand_atoms=ligand_atoms, annihilate_electrostatics=annihilate_electrostatics, annihilate_sterics=annihilate_sterics) final_time = time.time() elapsed_time = final_time - initial_time logger.info("AbsoluteAlchemicalFactory initialization took %.3f s" % elapsed_time) platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) alchemical_system = factory.createPerturbedSystem( AlchemicalState(0, 1, 1, 1)) # Serialize for debugging. with open('system.xml', 'w') as outfile: outfile.write(alchemical_system.__getstate__()) compareSystemEnergies(positions, [reference_system, alchemical_system], ['reference', 'alchemical'], platform=platform, precision=precision) return
def lambda_trace(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilateElectrostatics=True, annihilateSterics=False, nsteps=50): """ Compute potential energy as a function of lambda. """ # Create a factory to produce alchemical intermediates. factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms) platform = None if platform_name: # Get platform. platform = openmm.Platform.getPlatformByName(platform_name) delta = 1.0 / nsteps def compute_potential(system, positions, platform=None): timestep = 1.0 * units.femtoseconds integrator = openmm.VerletIntegrator(timestep) if platform: context = openmm.Context(system, integrator, platform) else: context = openmm.Context(system, integrator) context.setPositions(positions) state = context.getState(getEnergy=True) potential = state.getPotentialEnergy() del integrator, context return potential # discharging outfile = open('discharging-trace.out', 'w') for i in range(nsteps+1): lambda_value = 1.0-i*delta alchemical_system = factory.createPerturbedSystem(AlchemicalState(0, lambda_value, 1, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics)) potential = compute_potential(alchemical_system, positions, platform) line = '%12.6f %24.6f' % (lambda_value, potential / units.kilocalories_per_mole) outfile.write(line + '\n') logger.info(line) outfile.close() # decoupling outfile = open('decoupling-trace.out', 'w') for i in range(nsteps+1): lambda_value = 1.0-i*delta alchemical_system = factory.createPerturbedSystem(AlchemicalState(0, 0, lambda_value, 1, annihilateElectrostatics=annihilateElectrostatics, annihilateSterics=annihilateSterics)) potential = compute_potential(alchemical_system, positions, platform) line = '%12.6f %24.6f' % (lambda_value, potential / units.kilocalories_per_mole) outfile.write(line + '\n') logger.info(line) outfile.close() return
def alchemical_factory_check(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilate_electrostatics=True, annihilate_sterics=False): """ Compare energies of reference system and fully-interacting alchemically modified system. ARGUMENTS reference_system (simtk.openmm.System) - the reference System object to compare with positions - the positions to assess energetics for receptor_atoms (list of int) - the list of receptor atoms ligand_atoms (list of int) - the list of ligand atoms to alchemically modify """ # Create a factory to produce alchemical intermediates. logger.info("Creating alchemical factory...") initial_time = time.time() factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms, annihilate_electrostatics=annihilate_electrostatics, annihilate_sterics=annihilate_sterics) final_time = time.time() elapsed_time = final_time - initial_time logger.info("AbsoluteAlchemicalFactory initialization took %.3f s" % elapsed_time) platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) delta = 1.0e-5 # Create systems. compareSystemEnergies(positions, [reference_system, factory.createPerturbedSystem(AlchemicalState(1, 1, 1, 1))], ['reference', 'alchemical'], platform=platform) compareSystemEnergies(positions, [factory.createPerturbedSystem(AlchemicalState(1, 1, 1, 1)), factory.createPerturbedSystem(AlchemicalState(1, 1-delta, 1, 1))], ['alchemical', 'partially discharged'], platform=platform) compareSystemEnergies(positions, [factory.createPerturbedSystem(AlchemicalState(1, delta, 1, 1)), factory.createPerturbedSystem(AlchemicalState(1, 0.0, 1, 1))], ['partially charged', 'discharged'], platform=platform) compareSystemEnergies(positions, [factory.createPerturbedSystem(AlchemicalState(1, 0, 1, 1)), factory.createPerturbedSystem(AlchemicalState(1, 0, 1.-delta, 1))], ['discharged', 'partially decoupled'], platform=platform) compareSystemEnergies(positions, [factory.createPerturbedSystem(AlchemicalState(1, 0, delta, 1)), factory.createPerturbedSystem(AlchemicalState(1, 0, 0, 1))], ['partially coupled', 'decoupled'], platform=platform) return
def alchemical_factory_check(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilate_electrostatics=True, annihilate_sterics=False, precision=None): """ Compare energies of reference system and fully-interacting alchemically modified system. ARGUMENTS reference_system (simtk.openmm.System) - the reference System object to compare with positions - the positions to assess energetics for receptor_atoms (list of int) - the list of receptor atoms ligand_atoms (list of int) - the list of ligand atoms to alchemically modify precision : str, optional, default=None Precision model, or default if not specified. ('single', 'double', 'mixed') """ # Create a factory to produce alchemical intermediates. logger.info("Creating alchemical factory...") initial_time = time.time() factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms, annihilate_electrostatics=annihilate_electrostatics, annihilate_sterics=annihilate_sterics) final_time = time.time() elapsed_time = final_time - initial_time logger.info("AbsoluteAlchemicalFactory initialization took %.3f s" % elapsed_time) platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) alchemical_system = factory.createPerturbedSystem(AlchemicalState()) # Serialize for debugging. with open('system.xml', 'w') as outfile: outfile.write(alchemical_system.__getstate__()) compareSystemEnergies(positions, [reference_system, alchemical_system], ['reference', 'alchemical'], platform=platform, precision=precision) return
def benchmark(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilateElectrostatics=True, annihilateSterics=False, nsteps=500): """ Benchmark performance relative to unmodified system. ARGUMENTS reference_system (simtk.openmm.System) - the reference System object to compare with positions - the positions to assess energetics for receptor_atoms (list of int) - the list of receptor atoms ligand_atoms (list of int) - the list of ligand atoms to alchemically modify """ # Create a factory to produce alchemical intermediates. logger.info("Creating alchemical factory...") initial_time = time.time() factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms) final_time = time.time() elapsed_time = final_time - initial_time logger.info("AbsoluteAlchemicalFactory initialization took %.3f s" % elapsed_time) # Create an alchemically-perturbed state corresponding to nearly fully-interacting. # NOTE: We use a lambda slightly smaller than 1.0 because the AlchemicalFactory does not use Custom*Force softcore versions if lambda = 1.0 identically. lambda_value = 1.0 - 1.0e-6 alchemical_state = AlchemicalState(0.00, lambda_value, lambda_value, lambda_value) alchemical_state.annihilateElectrostatics = annihilateElectrostatics alchemical_state.annihilateSterics = annihilateSterics platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) # Create the perturbed system. logger.info("Creating alchemically-modified state...") initial_time = time.time() alchemical_system = factory.createPerturbedSystem(alchemical_state) final_time = time.time() elapsed_time = final_time - initial_time # Compare energies. timestep = 1.0 * units.femtosecond logger.info("Computing reference energies...") reference_integrator = openmm.VerletIntegrator(timestep) if platform: reference_context = openmm.Context(reference_system, reference_integrator, platform) else: reference_context = openmm.Context(reference_system, reference_integrator) reference_context.setPositions(positions) reference_state = reference_context.getState(getEnergy=True) reference_potential = reference_state.getPotentialEnergy() logger.info("Computing alchemical energies...") alchemical_integrator = openmm.VerletIntegrator(timestep) if platform: alchemical_context = openmm.Context(alchemical_system, alchemical_integrator, platform) else: alchemical_context = openmm.Context(alchemical_system, alchemical_integrator) alchemical_context.setPositions(positions) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() delta = alchemical_potential - reference_potential # Make sure all kernels are compiled. reference_integrator.step(1) alchemical_integrator.step(1) # Time simulations. logger.info("Simulating reference system...") initial_time = time.time() reference_integrator.step(nsteps) reference_state = reference_context.getState(getEnergy=True) reference_potential = reference_state.getPotentialEnergy() final_time = time.time() reference_time = final_time - initial_time logger.info("Simulating alchemical system...") initial_time = time.time() alchemical_integrator.step(nsteps) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() final_time = time.time() alchemical_time = final_time - initial_time logger.info("TIMINGS") logger.info("reference system : %12.3f s for %8d steps (%12.3f ms/step)" % (reference_time, nsteps, reference_time/nsteps*1000)) logger.info("alchemical system : %12.3f s for %8d steps (%12.3f ms/step)" % (alchemical_time, nsteps, alchemical_time/nsteps*1000)) logger.info("alchemical simulation is %12.3f x slower than unperturbed system" % (alchemical_time / reference_time)) return delta
def lambda_trace(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, precision=None, annihilate_electrostatics=True, annihilate_sterics=False, nsteps=100): """ Compute potential energy as a function of lambda. """ # Create a factory to produce alchemical intermediates. factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms, annihilate_electrostatics=annihilate_electrostatics, annihilate_sterics=annihilate_sterics) platform = None if platform_name: # Get platform. platform = openmm.Platform.getPlatformByName(platform_name) if precision: if platform_name == 'CUDA': platform.setDefaultPropertyValue('CudaPrecision', precision) elif platform_name == 'OpenCL': platform.setDefaultPropertyValue('OpenCLPrecision', precision) # Take equally-sized steps. delta = 1.0 / nsteps def compute_potential(system, positions, platform=None): timestep = 1.0 * units.femtoseconds integrator = openmm.VerletIntegrator(timestep) if platform: context = openmm.Context(system, integrator, platform) else: context = openmm.Context(system, integrator) context.setPositions(positions) state = context.getState(getEnergy=True) potential = state.getPotentialEnergy() del integrator, context return potential # Compute unmodified energy. u_original = compute_potential(reference_system, positions, platform) # Scan through lambda values. lambda_i = np.zeros([nsteps+1], np.float64) # lambda values for u_i u_i = units.Quantity(np.zeros([nsteps+1], np.float64), units.kilocalories_per_mole) # u_i[i] is the potential energy for lambda_i[i] for i in range(nsteps+1): lambda_value = 1.0-i*delta # compute lambda value for this step alchemical_system = factory.createPerturbedSystem(AlchemicalState(lambda_coulomb=lambda_value, lambda_sterics=lambda_value, lambda_torsions=lambda_value)) lambda_i[i] = lambda_value u_i[i] = compute_potential(alchemical_system, positions, platform) logger.info("%12.9f %24.8f kcal/mol" % (lambda_i[i], u_i[i] / units.kilocalories_per_mole)) # Write figure as PDF. import pylab from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt with PdfPages('lambda-trace.pdf') as pdf: fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111) plt.plot(1, u_original / units.kilocalories_per_mole, 'ro', label='unmodified') plt.plot(lambda_i, u_i / units.kilocalories_per_mole, 'k.', label='alchemical') plt.title('T4 lysozyme L99A + p-xylene : AMBER96 + OBC GBSA') plt.ylabel('potential (kcal/mol)') plt.xlabel('lambda') ax.legend() rstyle(ax) pdf.savefig() # saves the current figure into a pdf page plt.close() return
def overlap_check(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilate_electrostatics=True, annihilate_sterics=False, precision=None, nsteps=50, nsamples=200): """ Test overlap between reference system and alchemical system by running a short simulation. Parameters ---------- reference_system : simtk.openmm.System The reference System object to compare with positions : simtk.unit.Quantity with units compatible with nanometers The positions to assess energetics for. receptor_atoms : list of int The list of receptor atoms. ligand_atoms : list of int The list of ligand atoms to alchemically modify. platform_name : str, optional, default=None The name of the platform to use for benchmarking. annihilate_electrostatics : bool, optional, default=True If True, electrostatics will be annihilated; if False, decoupled. annihilate_sterics : bool, optional, default=False If True, sterics will be annihilated; if False, decoupled. nsteps : int, optional, default=50 Number of molecular dynamics steps between samples. nsamples : int, optional, default=100 Number of samples to collect. """ # Create a fully-interacting alchemical state. factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms) alchemical_state = AlchemicalState() alchemical_system = factory.createPerturbedSystem(alchemical_state) temperature = 300.0 * units.kelvin collision_rate = 5.0 / units.picoseconds timestep = 2.0 * units.femtoseconds kT = (kB * temperature) # Select platform. platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) # Create integrators. reference_integrator = openmm.LangevinIntegrator(temperature, collision_rate, timestep) alchemical_integrator = openmm.VerletIntegrator(timestep) # Create contexts. if platform: reference_context = openmm.Context(reference_system, reference_integrator, platform) alchemical_context = openmm.Context(alchemical_system, alchemical_integrator, platform) else: reference_context = openmm.Context(reference_system, reference_integrator) alchemical_context = openmm.Context(alchemical_system, alchemical_integrator) # Collect simulation data. reference_context.setPositions(positions) du_n = np.zeros([nsamples], np.float64) # du_n[n] is the for sample in range(nsamples): # Run dynamics. reference_integrator.step(nsteps) # Get reference energies. reference_state = reference_context.getState(getEnergy=True, getPositions=True) reference_potential = reference_state.getPotentialEnergy() # Get alchemical energies. alchemical_context.setPositions(reference_state.getPositions()) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() du_n[sample] = (alchemical_potential - reference_potential) / kT # Clean up. del reference_context, alchemical_context # Discard data to equilibration and subsample. from pymbar import timeseries [t0, g, Neff] = timeseries.detectEquilibration(du_n) indices = timeseries.subsampleCorrelatedData(du_n, g=g) du_n = du_n[indices] # Compute statistics. from pymbar import EXP [DeltaF, dDeltaF] = EXP(du_n) # Raise an exception if the error is larger than 3kT. MAX_DEVIATION = 3.0 # kT if (dDeltaF > MAX_DEVIATION): report = "DeltaF = %12.3f +- %12.3f kT (%5d samples, g = %6.1f)" % (DeltaF, dDeltaF, Neff, g) raise Exception(report) return
def benchmark(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilate_electrostatics=True, annihilate_sterics=False, nsteps=500, timestep=1.0*units.femtoseconds): """ Benchmark performance of alchemically modified system relative to original system. Parameters ---------- reference_system : simtk.openmm.System The reference System object to compare with positions : simtk.unit.Quantity with units compatible with nanometers The positions to assess energetics for. receptor_atoms : list of int The list of receptor atoms. ligand_atoms : list of int The list of ligand atoms to alchemically modify. platform_name : str, optional, default=None The name of the platform to use for benchmarking. annihilate_electrostatics : bool, optional, default=True If True, electrostatics will be annihilated; if False, decoupled. annihilate_sterics : bool, optional, default=False If True, sterics will be annihilated; if False, decoupled. nsteps : int, optional, default=500 Number of molecular dynamics steps to use for benchmarking. timestep : simtk.unit.Quantity with units compatible with femtoseconds, optional, default=1*femtoseconds Timestep to use for benchmarking. """ # Create a factory to produce alchemical intermediates. logger.info("Creating alchemical factory...") initial_time = time.time() factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms, annihilate_electrostatics=annihilate_electrostatics, annihilate_sterics=annihilate_sterics) final_time = time.time() elapsed_time = final_time - initial_time logger.info("AbsoluteAlchemicalFactory initialization took %.3f s" % elapsed_time) # Create an alchemically-perturbed state corresponding to nearly fully-interacting. # NOTE: We use a lambda slightly smaller than 1.0 because the AlchemicalFactory does not use Custom*Force softcore versions if lambda = 1.0 identically. lambda_value = 1.0 - 1.0e-6 alchemical_state = AlchemicalState(lambda_coulomb=lambda_value, lambda_sterics=lambda_value, lambda_torsions=lambda_value) platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) # Create the perturbed system. logger.info("Creating alchemically-modified state...") initial_time = time.time() alchemical_system = factory.createPerturbedSystem(alchemical_state) final_time = time.time() elapsed_time = final_time - initial_time # Compare energies. logger.info("Computing reference energies...") reference_integrator = openmm.VerletIntegrator(timestep) if platform: reference_context = openmm.Context(reference_system, reference_integrator, platform) else: reference_context = openmm.Context(reference_system, reference_integrator) reference_context.setPositions(positions) reference_state = reference_context.getState(getEnergy=True) reference_potential = reference_state.getPotentialEnergy() logger.info("Computing alchemical energies...") alchemical_integrator = openmm.VerletIntegrator(timestep) if platform: alchemical_context = openmm.Context(alchemical_system, alchemical_integrator, platform) else: alchemical_context = openmm.Context(alchemical_system, alchemical_integrator) alchemical_context.setPositions(positions) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() delta = alchemical_potential - reference_potential # Make sure all kernels are compiled. reference_integrator.step(1) alchemical_integrator.step(1) # Time simulations. logger.info("Simulating reference system...") initial_time = time.time() reference_integrator.step(nsteps) reference_state = reference_context.getState(getEnergy=True) reference_potential = reference_state.getPotentialEnergy() final_time = time.time() reference_time = final_time - initial_time logger.info("Simulating alchemical system...") initial_time = time.time() alchemical_integrator.step(nsteps) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() final_time = time.time() alchemical_time = final_time - initial_time logger.info("TIMINGS") logger.info("reference system : %12.3f s for %8d steps (%12.3f ms/step)" % (reference_time, nsteps, reference_time/nsteps*1000)) logger.info("alchemical system : %12.3f s for %8d steps (%12.3f ms/step)" % (alchemical_time, nsteps, alchemical_time/nsteps*1000)) logger.info("alchemical simulation is %12.3f x slower than unperturbed system" % (alchemical_time / reference_time)) return delta
def lambda_trace(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, precision=None, annihilate_electrostatics=True, annihilate_sterics=False, nsteps=100): """ Compute potential energy as a function of lambda. """ # Create a factory to produce alchemical intermediates. factory = AbsoluteAlchemicalFactory( reference_system, ligand_atoms=ligand_atoms, annihilate_electrostatics=annihilate_electrostatics, annihilate_sterics=annihilate_sterics) platform = None if platform_name: # Get platform. platform = openmm.Platform.getPlatformByName(platform_name) if precision: if platform_name == 'CUDA': platform.setDefaultPropertyValue('CudaPrecision', precision) elif platform_name == 'OpenCL': platform.setDefaultPropertyValue('OpenCLPrecision', precision) # Take equally-sized steps. delta = 1.0 / nsteps def compute_potential(system, positions, platform=None): timestep = 1.0 * units.femtoseconds integrator = openmm.VerletIntegrator(timestep) if platform: context = openmm.Context(system, integrator, platform) else: context = openmm.Context(system, integrator) context.setPositions(positions) state = context.getState(getEnergy=True) potential = state.getPotentialEnergy() del integrator, context return potential # Compute unmodified energy. u_original = compute_potential(reference_system, positions, platform) # Scan through lambda values. lambda_i = np.zeros([nsteps + 1], np.float64) # lambda values for u_i u_i = units.Quantity(np.zeros([nsteps + 1], np.float64), units.kilocalories_per_mole ) # u_i[i] is the potential energy for lambda_i[i] for i in range(nsteps + 1): lambda_value = 1.0 - i * delta # compute lambda value for this step alchemical_system = factory.createPerturbedSystem( AlchemicalState(0, lambda_value, lambda_value, lambda_value)) lambda_i[i] = lambda_value u_i[i] = compute_potential(alchemical_system, positions, platform) print "%12.9f %24.8f kcal/mol" % (lambda_i[i], u_i[i] / units.kilocalories_per_mole) # Write figure as PDF. import pylab from matplotlib.backends.backend_pdf import PdfPages import matplotlib.pyplot as plt with PdfPages('lambda-trace.pdf') as pdf: fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111) plt.plot(1, u_original / units.kilocalories_per_mole, 'ro', label='unmodified') plt.plot(lambda_i, u_i / units.kilocalories_per_mole, 'k.', label='alchemical') plt.title('T4 lysozyme L99A + p-xylene : AMBER96 + OBC GBSA') plt.ylabel('potential (kcal/mol)') plt.xlabel('lambda') ax.legend() rstyle(ax) pdf.savefig() # saves the current figure into a pdf page plt.close() return
def overlap_check(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilate_electrostatics=True, annihilate_sterics=False, precision=None, nsteps=50, nsamples=200): """ Test overlap between reference system and alchemical system by running a short simulation. Parameters ---------- reference_system : simtk.openmm.System The reference System object to compare with positions : simtk.unit.Quantity with units compatible with nanometers The positions to assess energetics for. receptor_atoms : list of int The list of receptor atoms. ligand_atoms : list of int The list of ligand atoms to alchemically modify. platform_name : str, optional, default=None The name of the platform to use for benchmarking. annihilate_electrostatics : bool, optional, default=True If True, electrostatics will be annihilated; if False, decoupled. annihilate_sterics : bool, optional, default=False If True, sterics will be annihilated; if False, decoupled. nsteps : int, optional, default=50 Number of molecular dynamics steps between samples. nsamples : int, optional, default=100 Number of samples to collect. """ # Create a fully-interacting alchemical state. factory = AbsoluteAlchemicalFactory(reference_system, ligand_atoms=ligand_atoms) alchemical_state = AlchemicalState(0.00, 1.00, 1.00, 1.0) alchemical_system = factory.createPerturbedSystem(alchemical_state) temperature = 300.0 * units.kelvin collision_rate = 5.0 / units.picoseconds timestep = 2.0 * units.femtoseconds kT = (kB * temperature) # Select platform. platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) # Create integrators. reference_integrator = openmm.LangevinIntegrator(temperature, collision_rate, timestep) alchemical_integrator = openmm.VerletIntegrator(timestep) # Create contexts. if platform: reference_context = openmm.Context(reference_system, reference_integrator, platform) alchemical_context = openmm.Context(alchemical_system, alchemical_integrator, platform) else: reference_context = openmm.Context(reference_system, reference_integrator) alchemical_context = openmm.Context(alchemical_system, alchemical_integrator) # Collect simulation data. reference_context.setPositions(positions) du_n = np.zeros([nsamples], np.float64) # du_n[n] is the for sample in range(nsamples): # Run dynamics. reference_integrator.step(nsteps) # Get reference energies. reference_state = reference_context.getState(getEnergy=True, getPositions=True) reference_potential = reference_state.getPotentialEnergy() # Get alchemical energies. alchemical_context.setPositions(reference_state.getPositions()) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() du_n[sample] = (alchemical_potential - reference_potential) / kT # Clean up. del reference_context, alchemical_context # Discard data to equilibration and subsample. from pymbar import timeseries [t0, g, Neff] = timeseries.detectEquilibration(du_n) indices = timeseries.subsampleCorrelatedData(du_n, g=g) du_n = du_n[indices] # Compute statistics. from pymbar import EXP [DeltaF, dDeltaF] = EXP(du_n) # Raise an exception if the error is larger than 3kT. MAX_DEVIATION = 3.0 # kT if (dDeltaF > MAX_DEVIATION): report = "DeltaF = %12.3f +- %12.3f kT (%5d samples, g = %6.1f)" % ( DeltaF, dDeltaF, Neff, g) raise Exception(report) return
def benchmark(reference_system, positions, receptor_atoms, ligand_atoms, platform_name=None, annihilate_electrostatics=True, annihilate_sterics=False, nsteps=500, timestep=1.0 * units.femtoseconds): """ Benchmark performance of alchemically modified system relative to original system. Parameters ---------- reference_system : simtk.openmm.System The reference System object to compare with positions : simtk.unit.Quantity with units compatible with nanometers The positions to assess energetics for. receptor_atoms : list of int The list of receptor atoms. ligand_atoms : list of int The list of ligand atoms to alchemically modify. platform_name : str, optional, default=None The name of the platform to use for benchmarking. annihilate_electrostatics : bool, optional, default=True If True, electrostatics will be annihilated; if False, decoupled. annihilate_sterics : bool, optional, default=False If True, sterics will be annihilated; if False, decoupled. nsteps : int, optional, default=500 Number of molecular dynamics steps to use for benchmarking. timestep : simtk.unit.Quantity with units compatible with femtoseconds, optional, default=1*femtoseconds Timestep to use for benchmarking. """ # Create a factory to produce alchemical intermediates. logger.info("Creating alchemical factory...") initial_time = time.time() factory = AbsoluteAlchemicalFactory( reference_system, ligand_atoms=ligand_atoms, annihilate_electrostatics=annihilate_electrostatics, annihilate_sterics=annihilate_sterics) final_time = time.time() elapsed_time = final_time - initial_time logger.info("AbsoluteAlchemicalFactory initialization took %.3f s" % elapsed_time) # Create an alchemically-perturbed state corresponding to nearly fully-interacting. # NOTE: We use a lambda slightly smaller than 1.0 because the AlchemicalFactory does not use Custom*Force softcore versions if lambda = 1.0 identically. lambda_value = 1.0 - 1.0e-6 alchemical_state = AlchemicalState(0.00, lambda_value, lambda_value, lambda_value) platform = None if platform_name: platform = openmm.Platform.getPlatformByName(platform_name) # Create the perturbed system. logger.info("Creating alchemically-modified state...") initial_time = time.time() alchemical_system = factory.createPerturbedSystem(alchemical_state) final_time = time.time() elapsed_time = final_time - initial_time # Compare energies. logger.info("Computing reference energies...") reference_integrator = openmm.VerletIntegrator(timestep) if platform: reference_context = openmm.Context(reference_system, reference_integrator, platform) else: reference_context = openmm.Context(reference_system, reference_integrator) reference_context.setPositions(positions) reference_state = reference_context.getState(getEnergy=True) reference_potential = reference_state.getPotentialEnergy() logger.info("Computing alchemical energies...") alchemical_integrator = openmm.VerletIntegrator(timestep) if platform: alchemical_context = openmm.Context(alchemical_system, alchemical_integrator, platform) else: alchemical_context = openmm.Context(alchemical_system, alchemical_integrator) alchemical_context.setPositions(positions) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() delta = alchemical_potential - reference_potential # Make sure all kernels are compiled. reference_integrator.step(1) alchemical_integrator.step(1) # Time simulations. logger.info("Simulating reference system...") initial_time = time.time() reference_integrator.step(nsteps) reference_state = reference_context.getState(getEnergy=True) reference_potential = reference_state.getPotentialEnergy() final_time = time.time() reference_time = final_time - initial_time logger.info("Simulating alchemical system...") initial_time = time.time() alchemical_integrator.step(nsteps) alchemical_state = alchemical_context.getState(getEnergy=True) alchemical_potential = alchemical_state.getPotentialEnergy() final_time = time.time() alchemical_time = final_time - initial_time logger.info("TIMINGS") logger.info( "reference system : %12.3f s for %8d steps (%12.3f ms/step)" % (reference_time, nsteps, reference_time / nsteps * 1000)) logger.info( "alchemical system : %12.3f s for %8d steps (%12.3f ms/step)" % (alchemical_time, nsteps, alchemical_time / nsteps * 1000)) logger.info( "alchemical simulation is %12.3f x slower than unperturbed system" % (alchemical_time / reference_time)) return delta